
AD-A274 055
1IhuhuIIII '-p

AFIT/GSO/ENG/93D-02

D*1CW

FILTERING, CODING, AND COMPRESSION

WITH MALVAR WAVELETS

THESIS

Stephen Robert Hall

Captain, USAF

AFIT/GSO/ENG/93D-02

Approved for public release; distribution unlimited

93 12 22 1 0-9 93-30996

AFIT/GSO/ENG/93D-02

FILTERING, CODING, AND COMPRESSION

WITH MALVAR WAVELETS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of Acce!-io'i !o07

Master of Science in Space Opera. ins NTIS r
DTIC T,.,ýA

By

Stephen Robert Hall, B.S. Disk

Captain, USAF

Dist

December, 1993

DTMe QUALITY I NMCD 3

Approved for public release; distribution unlimited

Preface

I would like to thank my thesis committee for their contributions to making this project

possible. Special thanks to my advisor, Dr. Bruce Suter, whose enthusiasm for his work was truely

contagious. His knowledge, background, and mathematical developments were critical to this thesis.

I must also personally thank Dr. Matthew Kabrisky for answering my many silly questions and

providing valuable insight; Dr. Tim Anderson for providing an "engineers" perspective on things

and telling me how things work in the real world; and Janet Slifka for all the computer wizardry.

I would like to thank my wife, Lisa, who was able to adjust to the long hours and lack of

attention that AFIT creates. Without the love and support of Lisa and my daughter, Katie, I would

not have been able to complete this program. AFIT has renewed my belief in the importance of

family. I also need to thank the Lord for making everything in my life possible. Finally, this is for

you Pop-Pop.

Stephen Robert Hall

ii

Table of Contents

Page

Preface .ii

Table of Contents iii

List of Figures vii

List of Tables x

Abstract xi

I. Introduction 1-1

Background 1-1

Data Compression: 1-1

Imagery: 1-I

Processing Technique: 1-2

Problem Statement 1-3

Research Goals 1-3

Outline 1-3

II. Background 2-1

Introduction 2-1

Homomorphic Filters 2-1

Cepstrum 2-2

Transforms 2-5

Performance 2-7

The Lapped Transform (Malvar Wavelet) 2-8

The Malvar Wavelet as a Multirate Filterbank 2-10

Generalized Malvar Wavelet 2-11

iii

Page

III. Complex-Valued Malvar Wavelets 3-1

Introduction 3-1

Complex-Valued Malvar Wavelet Algorithm 3-1

Software Implementation 3-5

GetFileData: 3-6

MultiplyByW indows: 3-6

Compute-Coefficients: 3-7

Reconsta'uctionFFT: 3-7

DivideBy _W indows. 3-7

Error-Out: 3-8

Do-W ork: 3-8

Called Packages 3-9

Error Criteria 3-9

Validation 3-11

Compression Methods 3-15

Absolute Thresholding: 3-15

Data Rates 3-16

Amplitude Information: 3-16

Position Information: 3-19

Exam ples: 3-22

Additional Promising Applications 3-24

Sum m ary 3-25

IV. Real-Valued Malvar Wavelets 4-1

Introduction 4-1

Validation 4-4

Compression 4-6

Homomorphic Filters 4-6

iv

Page

System Validation 4-10

Numerical Error Tests: 4-10

Graphical and Audio Tests: 4-11

Observations: 4-14

Complex and Real-Valued Malvar Wavelets 4-25

Compression/Data Rates 4-33

Sum m ary 4-34

V. Overlap Optimization For Real-Valued Malvar Wavelets 5-1

Introduction ... 5-1

Selecting An Error Criteria 5-1

Comparison Study 5-3

Speech Signals 5-6

Summary 5-7

VI. Real-Valued Homomorphic Filtering 6-1

Introduction ... 6-1

Development .. 6-2

Implementation ... 6-4

Deconvolution: 6-4

Reconstruction: 6-5

Sum m ary 6-8

VII. Conclusions 7-1

Summary and Conclusions 7-1

Follow-On Research 7-3

Appendix A. Input Data for Experiments A-1

Appendix B. Ada Source Code For The Complex Valued Malvar Wavelet B-1

v

Page

Appendix C. Ada Source Code For The Real Valued Malvar Wavelet C-1

Appendix D. Ada Source Code For Linear Transforms D-1

Appendix E. Ada Source Code For Compression and Error Calculations F,-1

Percent Compression E-1

Error Calculations Code E-2

Bibliography BIB-1

Vita ... VITA-1

vi

List of Figures

Figure Page

2.1. Canonic representation of homomorphic systems 2-1

2.2. Overlapping of Basis Functions 2-8

2.3. The DFT Represented in Multirate Form 2-10

2.4. The Malvar Wavelet Represented in Polyphase Form 2-11

3.1. (a) Real Part and (b) Imaginary Part of the Complex-Valued Basis Function Plot-

ted Over The Extended Interval. Let 0 = (n) and 1 = (n+1) 3-3

3.2. Example Input File .. 3-7

3.3. (a) Unit Step Function and (b) The Complex Malvar Wavelet Reconstruction of

Unit Step 3-14

3.4. (a) Utterance of the Word "Dark" and (b) The Complex Malvar Wavelet Recon-

struction 3-14

3.5. Utterance of the Sentence "She had your dark suit in greasy wash water all year" 3-19

3.6. Reconstruction of Sentence Using (a) 3 Mag Bits/2 Phase Bits at 90% Compression

and (b) 5 Mag Bits/3 Phase Bits at 95% Compression 3-20

4.1. Partitioned Axis 4-2

4.2. (a) Original Malvar wavelet and (b) the Modified MW Programs' Reconstruction

of the Unit Step Function 4-5

4.3. System 1: Homomorphic System Utilizing the Malvar wavelet 4-7

4.4. System 2: Homomorphic-Like System Utilizing the GMW 4-8

4.5. System 3: Malvar Wavelet with Linear Filter 4-8

4.6. Original Sinusoid Signal 4-12

4.7. (a) GMW (System 3) and (b) Homomorphic (System 1) Reconstruction of the

Sinusoid 4-13

4.8. Utterance of the Word "Dark" 4-14

4.9. (a) System 3 and (b) System 1 Reconstruction of the Word "Dark" 4-15

vii

Figure Page

4.10. (a) Utterance of the Sentence "She had your dark suit in greasy wash water all

year" and (b) Reconstruction of Sentence Using System 1 (lx) 4-16

4.11. (a) System 2 (log) (b) System 3 (sinh) Reconstruction of the Sentence "She had

your dark suit in greasy wash water all year" 4-17

4.12. (a) System 3 and (b) System 1 Reconstruction of the "S" Sound with 80% Com-

pression 4-22

4.13. Reconstruction of a Sinusoid, 0% Compression, Window Edge = Point 128 . . . 4-23

4.14. (a) 80% Compression and (b) 98% Compression Reconstruction of Sine, Window

Edge = Point 128 4-24

4.15. (a) Original Speech Signal and (b) Speech Signal Between Samples 16000 and

17000 4-27

4.16. Sinusoidal MW Reconstruction at 90% Compression (a) Complete Signal and (b)

Samples 16000 to 17000 4-28

4.17. Complex MW Reconstruction at 90% Compression (a) Complete Signal and (b)

Between Samples 16000 and 17000 4-29

4.18. (a) Sinusoidal and (b) Complex MW Reconstruction at 95% Compression ... 4-30

4.19. (a) Spectral Coefficients from the SMW and (b) Real Spectral Coefficients from

the CMW 4-31

4.20. (a) Sinusoidal and (b) Complex MW Reconstruction at 99% Compression. . . . 4-32

5.1. (a) 1 Point Overlap and (b) 50% Overlap Reconstructions of a Sinusoid, 98%

Coefficient Compression 5-2

5.2. L2 Error Versus Percent Overlap (a. "Wash", b. "Dark") 5-4

5.3. L2 Error Versus Percent Overlap (a. "S", b. "She") 5-4

5.4. L2 Error Versus Percent Overlap (a. "Ear", b. Sine) 5-5

5.5. L2 Error Versus Percent Overlap (Two Low Freq Sines) 5-5

5.6. L2 Error Versus Percent Overlap (a. Convolution of Two Sines, b. Damped Sine) 5-6

5.7. Reconstruction of the Sentence, "A Boring Novel Is A Superb Sleeping Pill", Using

(a) 1 Point Overlap and (b) 50% (128 Point) Overlap 5-8

5.8. Reconstruction of the Same Sentence (From Sample 7500 to 11000) Using (a) 1

Point Overlap and (b) 50% (128 Point) Overlap 5-9

viii

Figure Page

6.1. A Generalized Malvar Wavelet Homomorphic System 6-2

6.2. Damped Sinusoid with an Echo 6-5

6.3. Malvar Wavelet Coefficients 6-6

6.4. Homomorphic Domain ... 6-6

6.5. Perfectly Reconstructed Damped Sinusoid with Echo 6-7

6.6. Reconstructed Damped Sinusoid with No Echo 6-8

A.1. Utterance of the Sentence "She had your dark suit in greasy wash water all year" A-i

A.2. Utterance of the Word (a) "Wash" and (b) "She" A-2

A.3. Utterance of the Word (a) "Dark" and (b) "Ear" A-3

A.4. (a) The Sound "S" and (b) Low Frequency Sinusoid A-4

A.5. (a) Low and (b) High Frequency Sinusoids A-5

A.6. (a) Convolution of Two Different Frequency Sinusoids and (b) Damped Sinusoid

with an Echo ... A-6

ix

List of Tables

Table Page

3.1. Output Errors of the CMW Program with Different Input Signals 3-12

3.2. Output Errors of the CMW Program with the Unit Step and Varying Amount of

Overlap 3-13

3.3. Reconstruction of the Unit Step Function 3-13

3.4. Reconstruction Error of the CMW Using 90% and 95% Compression and Varying

the Number of Bits to Represent the Magnitude and Phase 3-18

4.1. Reconstruction Errors Associated with the Real-Valued Malvar Wavelet 4-6

4.2. Reconstruction Errors Associated with System 1 4-10

4.3. Reconstruction Errors Associated with System 2 4-11

4.4. Reconstruction Errors Associated with System 3 4-11

4.5. Average Errors Associated with System 1 4-18

4.6. Average Errors Associated with System 2 4-19

4.7. Average Errors Associated with System 3 4-19

4.8. Variance of Errors Associated with System 1 4-19

4.9. Variance of Errors Associated with System 2 4-20

4.10. Variance of Errors Associated with System 3 4-20

4.11. L2 and RMS Errors for the Sinusoidal and Complex Malvar Wavelets at 90%, 95%,

and 99% Compression 4-26

5.1. Error Criteria Comparison 5-1

5.2. Reconstruction Errors Versus Amount of Overlap and Percent Compression . . . 5-7

6.1. Homomorphic Filtering System with Malvar Wavelet 6-4

x

AFIT/GSO/ENG/93D-02

Abstract

This thesis develops and evaluates a number of new concepts and tools for the analysis of

signals using Malvar wavelets (lapped orthogonal transforms). Windowing, often employed as a

spectral estimation technique, can result in irreparable distortions in the transformed signal. By

utilizing the Malvar wavelet, any signal distortion resulting from the transformation can be elimi-

nated or cancelled during reconstruction. This is accomplished by placing couditions on the window

and the basis function and then incorporating the window into the orthonormal representation.

Paradigms for both a complex-valued and a real-valued Malvar wavelet are summarized. The

algorithms for the wavelets were implemented in the DOD standard language, Ada. The code was

verified to ensure perfect reconstruction could be obtained and experiments were performed using

the wavelet programs. Various compression techniques were investigated and evaluated using the

Malvar wavelet in both homomorphic and non-homomorphic systems. The Malvar wavelet has the

unique ability to overlap adjacent windows without increasing the number of transform coefficients.

Various amounts of window overlap were investigated to determine if there is an optimal amount

which should be used. In addition, the real-valued basis function was used to attempt real-valued

deconvolution. It was found that the real-valued Malvar wavelet, with just one point of overlap

for each window, provided better or equally as good reconstruction of signals as most of the more

complex systems. This same real-valued basis function could be used to perform deconvolution, if

the original signal has certain symmetries.

xi

FILTERING, CODING, AND COMPRESSION

WITH MALVAR WAVELETS

L Introduction

Background

The United States has a great need for improved digital signal processing techniques in order

to reduce the burden on overloaded communications satellites and to reap more information from

satellite imagery.

Data Compression: One of the largest problems during Operation Desert Storm was the lack

of communication channels available to field and command units. Virtually 100% of the military

ultra-high frequency and super-high frequency satellite communication channels were consumed

by logistics, administrative, and intelligence data during the conflict (5:82). Over 90% of the

communications into and out of the theater went over communication satellites, however over 20%

of the information had to be sent via commercial satellites (36:4).

Compressing speech requires a three way trade-off among the goals of preserving intelligi-

bility and quality, limiting the bit rate, and minimizing computational complexity (23:225). All

three of these objectives must be considered when choesing the best compression algorithm. Trans-

form coding is one of the major low bit rate speech coding techniques being investigated by the

military (38).

Imagery: Space imagery often requires adaptive restoration to deblur out-of-focus imagery

because it is generally impossible to merely retake a given photograph under better conditions (12).

"Digital image restoration is useful whenever needed information in an image is hidden by some

1-1

type of degradation. The classic statement of the image restoration problem is: given a noisy and

blurred image, find an estimate of the ideal image using a priori information about the blur, noise,

and the ideal image" (12). The research for this thesis deals only with one dimensional signals,

however many of the techniques can easily be adapted to two dimensional images. The Malvar

wavelet is becoming increasingly important to all fields of digital signal processing and h%-- been

successfully used with an imaging technique called motion estimation (41).

Whenever a signal is transmitted through any medium it becomes convolved with a function

related to that medium. Speech is a signal that is a convolution of the speaker's voice pitch and

the sound of the word made by the vocal tract. A satellite image can be represented by the original

image convolved with its optical transfer function (or blurring function, which is a mathematical

representation of the atmosphere). A seismic recording can be described as the original signal

convolved with impulses, which appear as echoes in the seismic event. The term deconvolution

indicates the technique used to remove the transfer function from a given signal. This includes the

process of debluring images (12) or restoring old acoustic recordings (27).

Processing Technique: The Lapped Orthogonal Transform (LOT) is an important signal

processing tool that has been used to filter and code both speech (26) and image (17) (41) signals.

The LOT was first introduced by H.S. Malvar and D.H. Staelin, in 1988, in order to reduce errors in

image reconstruction (17). The complete derivation and implementation of the LOT is outlined in

Chapter 2. The LOT has also been termed the Malvar wavelet, by Yves Meyer (19), because of the

algorithm's importance to wavelet analysis; complimenting wavelet packet analysis. Ville proposed

two types of signal analysis in 1947. He explained that "we can either: first cut a signal into slices

(in time) with a switch; then pass these different slices through a system of filters to analyze them.

Or we can: first filter different frequency bands; then cut these bands into slices (in time) to study

their energy variations (19)." Yves Meyer has explained that the first approach leads us to "Malvar

wavelets" and the second approach leads to "wavelet packets" (19). These two algorithms are the

1-2

underlying foundation for wavelet analysis (19) (29). The terms "Lapped Orthogonal Transform"

and "Malvar wavelet" will be used interchangeably throughout this paper.

Problem Statement

Using the Malvar wavelet, investigate new ways in which this signal processing technique may

be used to filter, code, and compress digital signals.

Research Goals

The research for this thesis effort was essentially a set of experiments all related to the Malvar

wavelet (LOT) analysis. Several goals were established which guided the research for this thesis.

The research goals are as follows:

1. Investigate the use of a complex-valued basis with the Malvar wavelets. Can orthogonality be

preserved and can the algorithm be efficiently coded? Can this wavelet be successfully used

to perform data compression?

2. Investigate the use of the Lapped Orthogonal Transform in a homomorphic filter for speech

processing. Determine if there is a best method for data compression.

3. Investigate the use of overlap with real-valued Malvar wavelets. Is there a correlation between

the amount of overlap and the amount of compression?

4. Investigate the use of the sinusoidal basis function (as described in Chapter II and used with

the Sinusoidal Malvar wavelet) in a homomorphic filter to perform signal deconvolution. Can

real-valued basis functions be useful for signal deconvolution?

Outline

Chapter II expands on the background and theory used for this research effort. It includes

development of homomorphic filtering and the lapped transform. A complex-valued basis function

1-3

has many inherent advantages and Chapter III reports the effort to use an exponential basis func-

tion with the Malvar wavelet. Chapter IV presents the results of the lapped transform evaluated

with numerous compression techniques, including both homomorphic and non-homomorphic filters.

Chapter V is concerned with finding the optimal amount of overlap within the real-valued Mal-

var wavelet. Homomorphic deconvolution was investigated and the results of this work constitute

Chapter VI. Finally, a summary of key results, and a recommendation for follow-on research areas,

are outlined in Chapter VII.

1-4

I. Background

Introduction

Two important signal processing techniques must be well-defined for this research effort:

1. The Homomorphic Filter

2. The Malvar Wavelet (Lapped Orthogonal Transform)

This chapter will review homomorphic systems, the cepstrum (a specific case of the homo-

morphic filter), transforms, their measurements of performance, and finally the lapped transform.

Homomorphic Filters

Homomorphic filters are non-linear digital signal processing (DSP) systems that are very

important to speech and image processing (22). Homomorphic systems were originally described

by Dr. Alan Oppenheim (21). Oppenheim showed that, in its most general form, a homomorphic

system can be represented by algebraically linear (homomorphic) mappings between the input

and output signals (22:771). This system can be broken down into three separate homomorphic

system (as shown in figure 2.1); a characteristic system (D), a linear system (L), and the inverse

characteristic system (D(inv)) (22:772).

x'(n) y'(n)

Figure 2.1. Canonic representation of homomorphic systems

The cepstrum is a popular dsp tool that is a special case of a homomorphic system. The

cepstrum implements the Fourier transform as its characteristic system and the natural logarithm

as its linear system (27).

2-1

Cepstrum

Bogert, Healy, and Tukey first defined the cepstrum by paraphrasing the term "spectrum",

because cepstrum techniques perform a further spectral analysis on a frequency spectrum (4). Using

the same naming convention, terms such as "quefrency" and "liftering" correspond to frequency

and filtering in the cepstral domain (6:1429). Two versions of the cepstrum are used in signal

processing applications; the complex cepstrum and the power cepstrum.

The power cepstrum is defined as: "the power spectrum of the logarithm of the power spec-

trum" (27). This is denoted as:

C, = IY[log(IX(f)1 2)]j2 (2.1)

where IX(f)12 is the power spectrum of the signal and 7 is the Fourier transform. Note that the

final squaring operation is really unnecessary and is often not used (27). The independent variable

of the cepstrum is termed "quefrency" (4), which is a time signal in terms of frequency (units

of time which are treated like frequency). The Fourier transform of a spectrum yields time on

the independent axis. A large time value (high quefrency) represents a rapid fluctuation in the

spectrum and a low quefrency represents a slow fluctuation (27). Thus the cepstrum can space

apart these fluctuations in the the frequency of the signal and ultimately separate two convolved

signals in this quefrency domain.

Speech processing has made great use of the power cepstrum's ability to separate signals.

Voiced speech is made up of two distinct signals; the voice pitch (p(x)) and the sound of the word

from the vocal tract (.(x)). These two signals are convolved together to make coherent speech;

s(z) = p(z) * v(z) (23). Because of the convolution property of the Fourier transform, the power

spectrum of the signal changes the cu- .rolution into multiplication (6):

IS(f)12 = IP(f)12 . IV(f)12 (2.2)

2-2

The logarithm now separates the signal into two added terms (6):

log IS(f)I2 = log IP(f)1 2 + log IV(f)1 2 (2.3)

The power cepstrum of the input signal is now the sum of the power cepstrum of the two convolved

signals. The two sums may be easily separated by filtering if they occupy different quefrency

ranges (27). Pitch and vocal tract signals generally do have different ranges in quefrency (23). The

pitch of the voice fluctuates very quickly in the spectral domain of speech - therefore it has a large

spike at a high quefrency. The vocal tract is made up of the lips, mouth, and tongue. These can

not change nearly as quickly as the vocal cords can, therefore the vocal tract fluctuates slowly in

the frequency domain and has a spike in the low quefrency region. These spikes are called formant

peaks and have a number of uses in speech processing (6). Speech identification systems do not

use pitch information; male and female speech can be made to look the same by eliminating the

formant corresponding to the pitch (2). The cepstrum is used to find the formants of the pitch so

that this information can be removed from the speech signal. The biggest problem with the power

cepstrum is that many signals can not be directly restored because the phase information has been

lost.

The separated signals could be reconstructed if the signal's phase information were main-

tained. The complex cepstrum accomplishes this by using the complete spectrum of the signal

instead of simply the power spectrum (10). The complex cepstrum is defined as the inverse Fourier

transform of the logarithm of the spectrum of a signal (10). This can be shown in equation form

as:

cj = F-Iog[s(f)] = r log[S(f)]el2rf df (2.4)

The complex cepstrum retains the phase information of the original signals by taking the complex

logarithm of the spectrum. The natural logarithm of a complex value is equivalent to the natural

2-3

logarithm of the magnitude plus the phase of the signal (22:769) as shown below:

ln[X(f)] = In [IX(f)l ejLx(J)] (2.5)

I In IX(f)I + jtX(f) (2.6)

The complex cepstrum is a complex function, as the name implies. However, all complex cepstral

coefficients will be real, if the original signal is real (22). The real coefficients result due to the fact

that a real signal's spectrum will have phase with odd symmetry and the resulting inverse Fourier

transform will yield real coefficients. Because it keeps all phase and magnitude information, the

complex cepstrum is reversible - it is possible to return to the original signal after performing

filtering operations. Signals may not only be separated, like with the power cepstrum, but the

signal may also be fully reconstructed. Parts of the signal may be completely removed with the

complex cepstrum. This separation and removal is called deconvolution. A transmitted signal may

be separated into its original signal plus effects of transmission. These effects may then be filtered

and removed and the original signal restored (27).

The complex cepstrum is complicated by ambiguities in the phase angle, LX(ejw) (22:775).

At any given value of w, integer multiples of 21r + to will yield the same phase value. This leads

to the complex logarithm being multi-valued. The phase of the signal will have discontinuities

because each point can take on any value modulo 2x of its principle value. There have been many

algorithms defined to solve this phase unwrapping problem (6):

1. A correction sequence method, where a correction is calculated and added to the modulo 21r

phase.

2. Integrating the phase derivative.

3. An adaptive numerical integration procedure.

4. A recursive procedure to remove the linear phase.

2-4

Note that for minimum phase signals (no poles or zeros outside the unit circle), phase unwrapping

is not necessary. In this case the complex cepstrum will be the same as the power cepstrum.

The problems encountered and the additional computational complexity are a significant

drawback to the use of the complex cepstrum. Because of the laborious mathematics required for

these phase unwrapping techniques, there have been a number of alternative forms for calculating

the complex cepstrum without dealing with the phase information. The differential cepstrum as

described by Polydoros and Fain (24) takes the Fourier transform, then finds a normalized deriva-

tive of the transform coefficients, takes the inverse Fourier, and finally the logarithm to get the

differential cepstral coefficients. In another approach, Bednar and Watt estimate the derivative of

the log-amplitude as well as the phase spectrum and then perform a frequency domain integration

by dividing in time (3). This is similar to the integration method of Oppenheim and Schaefer (22),

however Bednar and Watt avoid any numerical integration or phase unwrapping to obtain i(n)

from z(n). Cepstral coefficients have also been calculated entirely in the time domain in order to

avoid the phase, windowing, and aliasing problems of the Fourier transform (30). This time domain

cepstral transform is actually more computationally intensive than the Fourier based cepstrum, but

it can yield better results (30). It has also been shown that homomorphic filtering can be accom-

plished without directly calculating cepstral coefficients (11). Khare and Yoshikawa demonstrated

a relationship between the moments of a signal sequence and of its corresponding cepstral sequence.

Transforms

Transforms are composed of matrices, A, which calculate coefficients from an input signal.

These coefficients can be easily processed and transmitted. At a receiver, the signal is reconstructed

by performing the inverse transform, A- 1, and putting the blocks back together (16). One of the

most common transforms is the block transform. The block transform simply divides a signal into

equal blocks and transforms each block into a group of coefficients. Each block of length N is

2-5

changed by the transform matrix, A (NxN matrix) so that:

z(n) = [x(nN), z(nN - 1) ... z(nN - N + 1)]T (2.7)

This transformation can also be written as a general linear equation: X = ATx (16). The matrix

X is called the transform of the given signal x. One goal, when using transform coding, is to reduce

the number of bits per second required to transmit a given signal. This is accomplished through

careful selection of A. When the transform matrix is orthogonal, the transpose of A equals the

inverse of A. We can then easily find the given signal by the relation: x = AX (16). The columns

of the transform matrix, A, are called the basis functions (or basis vectors) because they are used

to transform one element of x to a corresponding element of X. These basis functions, an, are what

differentiate block transforms from each other. Orthogonal transform matrices provide us with

the ability to easily find the forward and inverse transform, because we do not need to actually

calculate the inverse of the matrix (16).

The discrete Fourier transform (DFT) and the discrete cosine transform (DCT) are two of

the best known and most widely used block transforms. The DFT has basis functions that are

complex sinusoids (28):

Ia. k exp 2rk (2.8)

where N is the block size. Like the Fourier series, the DFT represents the signal, x[n], as a

combination of harmonically-related sinusoids (16). The discrete cosine transform (DCT) provides

N different frequencies between 0 and ir, where the DFT has only N/2 frequencies. The DCT basis

is defined as (28):

S= C(k)Vico [(n2 +)](2.9)

2-6

where c(k) is7 when k = 0 and is equal to one otherwise. The DCT is so common in signal

processing that it has become the standard for the video-phone and other image coding applica-

tions (28).

Performance

Block transforms encounter a problem called the blocking effect, which occurs when signals

are reconstructed. Blocking effects arise due to the lack of overlap between blocks of the signal.

These effects are noticed as discontinuities along the boundaries of an image or as extraneous tones

in a speech signal. These effects become even more pronounced at low data rates (37). The DFT

and DCT lead to blocking effects because of the independent processing of each block. The final

segments of a prior block will generally not match with the first samples of the next block, because

the basis functions (as defined above) vary from one block to the next (16). Two methods have

been proposed to reduce blocking effects: overlapping and filtering. Overlapping consists of blocks

of samples which simply overlap some predetermined amount. In this way, the information around

the boundaries is transmitted twice and the receiver averages the data in the overlapped areas.

Unfortunately, overlapping increases the bit rate because extra samples must be sent. For filtering,

a low pass filter is added at the receiver to filter the boundary pixels. Although this does not

increase the bit rate, it tends to blur the signal across the boundaries (15).

Malvar explained that performance of a multirate filter bank (a transform coding application)

is directly related to; "perfect reconstruction, high stopband attenuation, narrow transition width,

high coding gain, absence of blocking effects, and fast algorithms" (15). A compromise must be

reached between these conflicting goals. Two methods of coding are often used: transform and

subband coding. Subband coding yields filters of high performance (ie high stopband attenuation

and narrow transition widths) but they are also of high complexity (longer, slower algorithms).

Transform coding yields a faster process but poorer filters, which lead to the blocking effects.

2-7

The Lapped Transform (Malvar Wavelet)

The lapped transform (or Malvar wavelet) provides an excellent tradeoff between complexity

and filter performance (15). The lapped transform has the same benefits as the overlapping method,

but without the increase in the bit rate (18). The LT eliminates the blocking effects by overlapping

adjacent blocks of the signal, hence the term "lapped" transform.

First let the incoming signal, x[n], be composed of MN samples, where M is the block size.

Traditional overlapping would transform this signal into N blocks each of length M. The lapped

transform will instead transform the signal into N blocks of length L, where L > M, so that adjoining

blocks will overlap by L - M samples (note that traditionally L < 2M). The basis functions have

been made longer than the block length, which allows for a smoother transition at the ends of the

blocks (see Figure 2.2) (16).

0.5 tWj-l(X) . .

0

I I I I

aj - Ej aj a3 + ci ai+l - c,+i aj+i aj+1 + cj+l

Figure 2.2. Overlapping of Basis Functions

This lapped transform method closely resembles the basic method of overlapping. The fun-

damental difference between the two is that the LT maps the L samples of each block back into M

transform coefficients. Therefore, there is no increase in the data rate when using the LT, because

2-8

the number of coefficients are now equal to the original block size again (18). The LT can also be

designed as a perfect reconstruction process - - if all of the transform coefficients are used at the

receiver, the reconstructed signal will be an exact copy of the original signal (with the possibility

of a pure delay) (37). In order to achieve perfect reconstruction, the transform matrices must obey

the following properties (37):

AAT = I and ATA = I (2.10)

where I is the identity matrix. This is the same as saying that the basis functions in A must be

orthogonal to each other. Because the basis functions overlap, they must also be orthogonal to the

basis functions in the neighboring blocks. The LT is often called the lapped orthogonal transform

(LOT), due to this orthogonality requirement (16).

The LOT is a better alternative than the conventional block transforms for signal coding

applications because it eliminates the blocking effects without increasing the data rate. The price

paid is the increase in computational complexity of the transform algorithm (1). Transform coding

generally employs the discrete cosine transform (DCT) because of its close approximation to the

statistically optimal Karhunen-Loeve transform (14). The LOT actually may require as much as 30

percent more computations (mainly additions) than the DCT. However, the LOT leads to slightly

smaller reconstruction errors than does the DCT (18). There have been a number of variations and

extensions to the theory of lapped transforms since the introduction of the first LOT by Cassereau.

Some of the other types of LOTs which have been characterized include: (i) Modulated Lapped

Transform (MLT), which is based on Quadrature Mirror Filter Banks (14); (ii) Extended Lapped

Transform (ELT), which is an MLT utilizing a larger basis function (15); (iii) The LOT then can

be generalized with any orthogonal bases desired (1). The LOT, although not a wavelet in the

traditional sense, compliments wavelet packet analysis, as such, it has been termed the Malvar

wavelet by Yves Meyer (19).

2-9

The Malvar Wavelet as a Muttirate Filterbank

Transforms can also be represented as a series of filterbanks (37:113). "A digital filter bank is

a collection of digital filters with a common input" (37:113). The Fourier transform can be shown

as in figure 2.3. The analysis bank splits the signal, z[n], into M subband signals, z•[n], where

SW* W V

/-.
Ii Subboo b"M MSUba O"ua

~-- ANALY30 BANK - SYNTHESSB DK--

Figure 2.3. The DFT Represented in Multirate Form

0 < k < M - 1. The synthesis filters then recombine the M subband signals into a single signal,

i[n]. The Discrete Fourier Transform (DFT) is defined as (37:794):

M-1

X(k) = --[n]Wm (2.11)
n=O

where WM = e-j2w/M. The analysis and synthesis banks of the DFT are therefore constructed of

the matrix W which has M x M elements.

The Malvar wavelet may be represented as a multirate filterbank where the matrix T is now

MxL (rather than MxM, where L > M) as shown in figure 2.4 (37:325). This means that there

are more input subbands to the filter T than output subbands. The Malvar wavelet, as stated

previously, will take the L samples of each block and map them onto M transform coefficients.

The IM (in figure 2.4) represents a decimator. A decimator (or downsampler) retains only those

samples of z[n] which occur at time equal to multiples of M (37:100). For example, if M=2 then

2-10

LICOMP_ U-Cc LCC-N

SX,8) Y()

Figure 2.4. The Malvar Wavelet Represented in Polyphase Form

the signal would be broken into its even and odd components. The TM then puts the samples back

into their proper place in the data stream when the signal is reconstructed at the receiver.

By downsampling prior to transmission, the computation rate through a communications

satellite can be reduced. Therefore slower, cheaper, more efficient, and more reliable elements can

be used on-board the satellite (32). This, in turn, would mean that the lose of an element would

have less of an eirect on the mission.

Generalized Malvar Wavelet

Windowing, often employed in filtering and spectral estimation, can result in irreparable

distortions in the transformed signal. By utilizing the Malvar wavelet, any signal distortion resulting

from the transformation can be eliminated at reconstruction. Suter and Oxley have presented a

Generalized Malvar wavelet (GMW) which places conditions on the windows and orthonormal basis

and allows for perfect reconstruction (34). The basis is defined by performing an odd and even

2-11

extension of the orthogonal basis function, fj,k(z), about the end points of the window such that:

0 , -oo<z<_aj- j

-fj,k(2aj -- z) , aj-cj <z<aj

,,k(z) = fj,k(Z) , aj <z <aj+l (2.12)

fj,k(2aj+l -. z) , aj+l < z < aj+l + cj+1

0 , aj+1+- cj+l<z<oo.

where aj and a,+1 are the end points of the framne and cj and cj+. are the overlaps about the

two points. An associated weight function, Pj(z), is then used to ensure perfect reconstruction is

possible. All of the basis functions investigated in this thesis do not require a weight function; let

•j(z) = 1. The normalized window of the GMW is chosen such that (8):

w,(z)=1 for aj + E <_z<_aj+l-f+l

w&(z)=0 for a,-cj>z>a,+l+cE+1

wj(aj-o')-=w.-_(aj+o,) for oE[-cj,cj]

wjt(z)+w.-- _(x)=1 for aj-c-j_<z<aj,+c (2.13)

The Generalized Malvar wavelet (generalized lapped orthogonal transform) is thus a lapped

transform which allows for many variations within the same transform. Most transforms, like the

DFT or DCT, maintain the same block length and basis function throughout the data set. Suter

and Oxley derived the GMW based on being able to vary the:

1. Lengths of the Windows.

2. Orthonormal Basis Functions (A).

3. Overlap Between Adjacent Windows.

4. Window Amplitudes.

2-12

The goal of the generalized Malvar wavelet, like all transform coding, is to determine a set of

coefficients which may then be used to reconstruct the original data. The benefit of being able to

vary the parts of the transform is that the transform may be tailored to the data set. For example,

the number of coefficients required to model a slowly varying signal can be reduced by increasing

the length of the window (32).

Two Malvar wavelets were studied for this thesis effort. A Complex Valued Malvar wavelet,

which is very similar to the short time Fourier transform because it utilizes an exponential basis

function (32):

f(z) = ej*2lmx (2.14)

With the weight function , p(z), equal to one. The Complex Malvar wavelet also keeps a constant

length window throughout the data set as well as constant amounts of overlap between the windows.

The second transform is a Generalized Real Valued Malvar wavelet. This wavelet uses a sinusoidal

basis function:

with p(z) = 1. This transform is a generalized wavelet because it may use variable length windows,

and variable amounts of overlap within any given data set (34).

2-13

III. Complex- Valued Malvar Wavelets

Introduction

The Balian-Low Theorem states that, if a complex-valued exponential basis is windowed,

the resulting transform will not be localized in time or not be localized in frequency. As a result,

orthogonality of the transform can not be maintained. This represents a significant constraint

to signal processing because of the central role of the Short Time Fourier Transform. Although

this represents a "no-go" condition, by changing the underlying assumptions a positive result is

possible. Namely, if the functions have extensions outside the interval and windows are defined

with constraints, an orthogonal windowed transform is possible.

Suter and Oxley have formulated an orthogonal Malvar wavelet that has a complex-valued

exponential basis (33). Moreover, the resulting algorithm has the same "Big Oh" complexity as

the conventional Fast Fourier Transform (FFT).

Complex- Valued Malvar Wavelet Algorithm

Suter and Oxley (33) generate the complex-valued Malvar wavelet (CMW) with eight primary

steps which are summarized below:

(1) Define a Basis: An exponential-like basis can be applied to the Malvar wavelet and

complete orthogonality will be preserved, even after windowing. The basis function is first defined

as the even and odd extensions of an exponential function:

0 , -oo<x<_n-e

e-j21rm•: n-- < x<n

k~r~z = ej2wmx n < z < (n + I)(3.1)

-- j2rmc ,(n + 1) < z < (n+ 1) +e

0 , (n+1)+c < z< oo.

3-1

Where [n, n + 1] is the n*h interval, and e is the amount of overlap between windows. The basis

function definition is equivalent to even and odd extending both the real and imaginary parts of the

function beyond (n) and (n+1). The basis functions and their extensions are shown in figures 3. 1a

and b. Note that the values of n and n+1, in the figure and the calculations, have been normalized

to zero and one.

(2) Define a Window: The transform will have a single window function that will be used

over each interval. The window, g(z) (with n = 0), is defined as:

0 , -oo< z<O-c

sin(I{z + E}) , O-E<z<O+f

g(z)- 1 , 0+ X<z<(0+1)- - (3.2)

cos(-4{z - (1) +) CD (0 +1) - f < < (0+ L + C

0 , (0+ 1)+f<_ < 0oo.

Now the basis is equal to ut,,m = fn,m(z)g(x - n). This is an orthonormal basis set for L2(?).

(3) Multiply By the Window and Define the Coefficients, a: The complex Malvar wavelet

coefficients are calculated by:

nm = (8, Ur,m)

= jfl+ s(x)g(z - n)fn,m(z)dz

cn=jn+ hn(X) 3 2 wmd
(3.3)

3-2

1

0.8

0.6

0.4

02

0-

-0.2

-0.4

-0.6

-0.8

50 0.5 1 1.5

(a)

0.8-

0.6-

OA

0.2-

03

-0.2

-0.4-

-0.8-

0.50.1.

(b)

Figure 3.1. (a) Real Part and (b) Imaginary Part of the Complex-Valued Basis Function Plotted
Over The Extended Interval. Let 0 = (n) and 1 = (n+ 1).

3-3

where .(z) is the input signal and g(z) and 1(z) are as defined above and h. is defined as:

J a(z)g(z - n) + s(2n - z)g(n - z) n<z<.+
h.n(z)= S(Z) ,n+c<z<(n+l)-e (3.4)

s(z)g(x - n) - s(2(n + 1) - z)g(n + 2 - z) , (n+1)-c<z <(n+ 1)

(4) Define a New Array: Let H.,1 = hn(n + 61). Where, H.,0 = hn(n) denotes the Folded

Data at the start of the interval, and Hn,N = hn(n + 1) denotes the Folded Data at the end of the

interval. The trapezoidal rule can then be used to approximate the integration:

N-1
T / • ,V~r 1/N

en,m tm = H.,o + H., 1S'wm'N + i ,N (3.5)
1=1

From the hn equations, it is clear that Hn,N will equal zero. Now let:

,, I1=0 (3.6)
2Hnj I<i<N-1

(5) Perform an Inverse FFT: The summation from step 4 thus becomes an N point inverse

Fourier transform of f. The spectral coefficients, a, are calculated with a Fourier transform of the

windowed and scaled input signal:

1N-1

= =0

- 2 VI
(3.7)

The Reconstruction of the signal is accomplished by reversing the above steps:

3-4

(1) Perform a Forward FFT: The signal may now be reconstructed, given the coefficients

2 (. (3.8)

(2) Scale the Values: Scaled the • values back to H.,L:

n,o , !=0

H,. & = (3.9)
(•)•z,1<1<N-1

(3) Divide By the Window: Finally, the reconstructed signal, Se,,, is calculated by dividing

back out the original window, g(z):

H...

SO g(z - n)H.3l - g(n - X)Hn-1,N-1 n < z<n c (310S,,1 = (3.10)

Hn,, ,n+c<x<(n+)-

g(z-n)Hn,,,+g((n+2)-z)Hn+l,N_1 , (n+l)-c<z<n+1

Software Implementation

It is important that follow-on students be able to understand, utilize, and modify the Mal-

var wavelet programs. The Ada programming language is well known for being easily modified

and maintained. Therefore, the complex Malvar wavelet was implemented using Ada. The com-

plex transform program will correspond to the sinusoidal Malvar wavelet Ada program written by

Raduenz (26). Thus all of the Malvar code will be in the same language and be easily compared

and contrasted. This section will step through each package of the wavelet program to outline what

it is doing and how the package relates to the rest of the code. A complete listing of the source

code is listed in Appendix B.

3-5

Get-File-Data: The GetFikeData procedure simply reads in the required input files and

then prepares the data vectors to be used by the rest of the program. The user must give the name

of an input file to be used by this procedure. This input file must contain the following:

1. The filename containing the data set to be processed.

2. The filename for the spectral coefficient data.

3. The filename for the reconstructed data set.

4. The number of data points within the data set (or number of points wished to be processed).

5. The window size to be used (this must be an integer multiple of the size of the data set).

6. The amount of overlap to be used between intervals.

An example input file is shown in figure 3.2. It reports a data file called "input.dat" and

requests the spectral coefficients to be placed in "alpha.dat" and the reconstructed data set into

the file called "output.dat". The file is 1000 points long (or just want to process 1000 points of

a larger data set). The window size is 200 points. Therefore there will be 5 windows of data:

{(0,200), (200,400), ... , (900,1000)}. Now the first point (0) and the last point (1000) are actually

the same partition point. There is no data which resides in point zero; it is used only as a place

holder for the overlap region. The first window will overlap with the last window and the last

will overlap with the first. This overlap has been accomplished without copying any data. This

initial overlap could be modified so that the first window would overlap with itself, thus allowing

for a continuous stream of data. The program calls in the correct data positions to accomplish the

folding and unfolding of all of the windows, including the first and the last. Finally, the last value

tells us that there are 10 points of overlap between intervals. The partitions are established after

all of the data is read into the program. The program determines where all of the intervals are

going to start and stop. These correspond to the positions; {N(n), N(n+1), N(n+2), -.- }. The

last thing Get-File.Data does is to read in the actual data set into a vector called "Data(j)".

Multiply..By Windows: This procedure performs the "folding" of the data by multiplying

the data by the window as defined by equation 3.4. The window and data values are passed to this

3-6

input.dat
alphadat
output .dat
1000
200
10

Figure 3.2. Example Input File

procedure from the master package, Do-Work. The procedure steps through equation 3.4 starting

with the left edge of the interval, then the center, and finally the right edge. There are unique

right edge equations for the first window. This is due to the fact that data must be pulled from

the other end of the data file (and not just the adjoining interval). For the same reasons, there are

special equations for the left edge when using the last interval. The folded data is then sent back

to the master package, Do-Work.

Compute-Coefficients: This procedure receives the folded data in segments (from N(n) to

N(n+l)-l, or 0 to N-1). It first scales the coefficients as in equation 3.6 and converts the data into

complex notation. It then sends the complex data to the FFT package to perform an N point (size

of the interval) inverse fast Fourier transform. The output of the FFT is then scaled by 1 per the

algorithm. This complex data (form 0 to N-i) is then sent back to Do- Work.

ReconsiruciionFFT: The reconstruction FFT package simply takes in the N points passed

from the Compute.Coefficients and sends it to the FFT package. Within the FFT package, an N

point forward FFT is performed. The very first coefficient is then doubled because of the way 6

was defined (see equation 3.6) and the entire segment is sent back to Do-Work.

DivideBy- Windows: DivideBy_ Windows calculates the reconstructed signal as defined in

equations 3.10. As shown in the algorithm, this package calculates the segment from (n - c) to

((n + 1) + c). If the regular interval, from n to (n+l), were calculated then coefficients from the

3-7

previous interval would be altered prior to being used to calculate the values for the next interval.

As in MuI*iply-By_ Windows, there are special equations for the first window. The first window will

be pulling data from the end of the data file. The last window does not need any special equations

because we only calculate up to the end of file minus the overlap. These "missing" points (from the

end of file - overlap to the end of file) have been calculated with the first window and are located

from point (0) to (0 - e).

Error-Out: This procedure calculates the reconstruction errors as defined later in this chap-

ter. It receives the reconstructed and original data sets and calculates the three numerical error

criteria:

1. Relative L2 Error based on equation 3.11.

2. Lo Error based on equation 3.12.

3. Root Mean Square Error based on equation 3.13.

4. Normalized lenyi Information Value based on equation 3.15.

Do.Work: This package controls the entire wavelet procedure. This procedure first calcu-

lates the window based upon the set of equations 3.2. This window is normalized from zero to one

and is used for all folding and unfolding of the data set. Each data segment is processed in the

main loop of this procedure. The main loop is defined from (0) to (Partitions'last-1) this means

that the program will start with the first window (point 0 to the first partition) and end with the

last window (the last partition - 1 to the last partition, which is the end of the file). In this way, the

finite length signal can be calculated without copying data points or processing segments multiple

times.

Do- Work calls each procedure as it is needed by the algorithm. This main procedure sends

all of the necessary data points and receives the transformed data back from the procedures. The

main loop is started over prior to the Divide..By Windows procedure, because the reconstruction

of the first window of the data set requires the transformed data from the end of the file. After

3-8

all steps of the wavelet are complete, Do- Work shifts the first c values of the reconstructed data

to the end of the reconstructed data file. This is done because Divide.By_ Windows calculates the

data based on shifted windows (n - c < z < (n + 1) - c instead of n < z < (n + 1)). Do-Work then

prints all of the information out to the requested data files.

Called Packages The complex Malvar wavelet program references multiple outside called

packages, including:

1. Text-lo

2. ComplexPkg

3. Math-Lib

4. Vector-Package

5. Type-Package

6. Print-Package

7. FFT-Package

These packages are discussed and documented by Raduenz (26:4-10) and are quite integral

to the workings of all of the wavelet programs.

Error Criteria

When testing and evaluating speech coding systems, one is usually interested in two measures

- quality and intelligibility. These two measures are closely related but not identical. If the quality

of a signal is high then the intelligibility will also be high. However, the opposite is not true, it is

possible to have very intelligible speech that is not of high quality. Speech synthesis systems produce

speech that is readily understandable, but they have a definite synthetic sound which degrades their

quality. Both quality and intelligibility are difficult to quantify. Coders are not normally tested

using numerical methods but with a group of listeners. The listeners indicate which rhyming word

from a given set was perceived. The number of words correctly perceived provides a score that

indicates the intelligibility of the system.

3-9

Numerical error criteria were utilized to determine the basic capabilities of each system. These

error criteria were very useful when simple sine waves and other known signals were input into the

systems. Six different criteria were used; four of these are numerical and two are more subjective

in nature.

The relative L2 measure is the error of the L2 norm of a signal (approximated by n coefficients)

relative to the L2 norm of the original signal (using all coefficients) (32). The L. criteria is a

measure of the point-wise peak error; the point-wise maximum difference between two signals (32).

Coifman used the relative L2 error criteria when he researched the link between compression of a

signal and the basis-set of a given window (7). The L2 and Lo are defined as:

L2 I E, actual2(x) - E, recon2(x)I (3.11)VE act uaP(z)

L,, = Max [Iaciual(x) - recon(z)J] (3.12)

The normalized root mean square (RMS) criteria is the basic error criteria that compares

the point-wise difference between two signals. It relates the total power difference between the two

signals. The normalized RMS is defined as:

RMS == -/,_V(actual(z) - recon(Z)) 2 (3.13)

The final numerical error criteria used is the RWnyi Information Value (RIV). Information

measures are normally used to describe the distributions of random variables (40:146). However

this measure has the potential to give some real insight as to how similar two signals are. The RWnyi

value relates the total amount of "information" residing in the signal. When a signal is transformed,

compressed, and reconstructed, it should loose some of the original signals information. The general

3-10

definition of the a'h order lRnyi information value for a discrete function, p, is (40:147):

Ra(P) a 1 0og2 P(X) (3.14)

where 0 < a < 1 or 1 < a < oo. In order to obtain a relation between the original signals informa-

tion and the reconstructed signals information, the second order RWnyi value of the reconstructed

signal was divided by the second order Rfnyi value of the original signal (32). Using this method,

a value of 1.0 would represent perfect reconstruction (with respect to the amount of information

present) and 0.0 would represent a total loss of the signal (100% compression). The Rlnyi measure

will take the form:

?
2 (actual, recon) = [log 2 EX., recon 2(Ze)] (3.15)

=[log E, acual 2 (y)]

The final two error tests are a more subjective criteria, but may have been the most important

tests of all. First, the reconstructed signals were plotted and visually compared to the original

signal. The plots gave a great amount of insight into the amount of noise in the reconstructed

signal and how much information was lost. Then, in the case of speech signals, the reconstructed

signal was played back via Entropics Waves+. This is the ultimate test for a digitized speech signal.

A signal can have the lowest reconstruction error possible, but if it does not sound correct, then

the reconstruction has been poor.

Validation

The program was debugged with two simple input files; a unit step and a sine wave. Once

these were reconstructed correctly, the size of the data file, size of the windows, and the amount of

overlap were varied to ensure that all of these combinations yielded perfect reconstruction. More

complex signals, like speech, were used as the final test of the program's reconstruction abilities.

3-11

Table 3.1 presents the reconstruction errors associated with the three signals; unit step,

sinusoid, and speech. These signals were broken-down and reconstructed using a sample size of

2000, with 250 point windows and 10 points of overlap between windows. The last entry on the

table is for an entire sentence of speech (28250 points at 8KHz), with 250 point windows and 10

point overlap. The table shows that each of the four signals were reconstructed to within the

machine round-off of the original data set. Note that the RIV error is plotted as 1.0 plus the given

value in the table. This was done because all of the RIV outputs were 0.999... 999, which does not

help to distinguish the errors. The error rises slight as the signals get more complicated and as

the amplitudes increase. The worst RMS error was the utterance of the word "dark." This is a

relatively short, high amplitude, and quickly varying signal that was still reconstructed perfectly

(RMS error = 4.216z10-10). The errors introduced when reconstructing an entire sentence were

lower because the numerical error was spread out and averaged across a much larger number of

samples.

Input Data Relative L 2 L,, RMS RIV (1.0 +)
Unit Step 2.231z10x- 1.877x10-11 5.060z10-` -0.066x10 2-
Sinusoid 2.237x10- 6 1.876xl0 1- 3.640z10-13 -0.072z10- 12

Utterance of "DARK" 2.861X10- 6 4.798z10- 7 4.216z10-1 0 -0.392.10- 12

Speech SeLtence 1.051z10- 6 4.489x10- 7 5.251x10- 1 1 -0.050z10- 12

Table 3.1. Output Errors of the CMW Program with Different Input Signals

Table 3.2 shows how the error changes with increasing overlap. The signal used was the

2000 point unit step with 250 point windows. Early runs showed that the majority of the error

is found in the overlap regions. This overlap error is provided in table 3.3, which shows the given

reconstruction around an end point (N) of a unit step function. Thus, for signals that are not

compressed, as the amount of overlap increases so will the calculation error.

The Malvar wavelet program not only provide very low numerical errors but also the graphic

displays and the audio reconstructions were perfect. The reconstruction of the unit step and the

3-12

Amount Overlap Relative L2 Lo, RMS RIV (1.0 +)
I point 2.384x10-` 2.442zI0-1 1.807z10-11 0.000zlO-12
5 % 2.482z10 0- 1.908zi0-10 5.628z10- 13 -0.081z10- 12

10% 3.728z10- 6 1.984z10-' 0 8.446z 10-13 -0.183z10-12

20% 5.367z10- 6 2.017zi0 1- 0 1.215zi0-12 -0.379z10-12

30% 6.611z10- 6 2.028z10-' 0 1.497z10- 1 2 -0.575Z10-12

40% 7.656z10- 6 2.034z10- 10 1.734zi0-12 -0.771zi0- 1 2

50% 8.575zi0-6 2.037x10- 10 1.942zI0- 12 -0.968zi0-12

Table 3.2. Output Errors of the CMW Program with the Unit Step and Varying Amount of
Overlap

Position Reconstructed Value
N - 6 9.99999999999999E-01
N - 5 1.00000000000002E+00
N - 4 9.99999999997335E-01
N - 3 9.99999999995931E-01
N - 2 9.99999999995932E-01
N - 1 9.99999999997335E-01
N 1.00000000000002E+00
N + 1 1.00000000001683E+00
N + 2 1.00000000001252E+00
N + 3 1.00000000000798E+00
N + 4 1.00000000000367E+00
N + 5 1.00000000000001E+00
N + 6 1.00000000000000E+00

Table 3.3. Reconstruction of the Unit Step Function

utterance of the word "dark" are shown in figures 3.3 and 3.4. There were no distortions of the

signal, even when the original and reproduced signal were compared in very small segments. The

ASCII data files may be transformed into speech files (.sd) to be played on Entropics Waves+ using

the following commands:

1. addfea -f frequency-plot -t FLOAT -c comment filenaae.asc filename.out

2. tofeasd -f frequency-plot -R 8000 filenaae.out filename.sd

When played through the Ariel audio interface, the original and recreated words and sentences

could not be differentiated from each other.

3-13

1.001 1.000

1.0 1.0008

1 .o 1 .oo

1.00 1.

¶ II.
0. Q990.

0.96 O.10

0. 0.

0.9 0.

--- 00. 6w 10,00 1600 D00 0. 5w 10,00 1560 200
80 O

Figure 3.3. (a) Unit Step Function and (b) The Complex Malvar Wavelet Reconstruction of Unit
Step

5=-1

Figure 3.4. (a) Utterance of the Word "Dark" and (b) The Complex Malvar Wavelet

Reconstruction

3-14

Compression Methods

There are many different methods which can be used to compress the number of coefficients

used for the transmission of a signal. Switzer studied eight different ways to select the most critical

values of a transformed signal (35:31-39). The first scheme was a simple max-picking method, where

the M largest values were used. The second scheme was a max-picking method with the frequencies

above 600 Hz being boosted. The third selection scheme used a peak-picking method, where the

max values are selected and the 12 nearest neighbors were then eliminated (to allow for more local

maxima to 1 - selected). The fourth used a max-peak selection with the four nearest neighbors

eliminated. The other methods used these plus a method for neighbor estimation. He found that

the basic max-picking technique performed better than most of the other methods and worse than

just two of the more complicated methods (35:70). Raduenz also performed similar experiments

with the LOT (Malvar wavelet) and came to the same conclusion that a basic max-picking method

performs just as well as most more elaborate methods (26:4-15).

Absolute Thresholding: Selecting the maximum values, as the max-picking methods of

Switzer and Raduenz do, is the same as eliminating all of the transform coefficients under a given

threshold. The Lapped Transform program was originally written so that a threshold could be

arbitrarily selected. Any coefficients under this threshold would be set to zero and not used in the

reconstruction of the signal. For the experiments being performed, a given PERCENT compres-

sion had to be obtained, so the program was modified to allow the user to select a given percent

compression. If one requires 85% compression (85 out of every 100 coefficients are set to zero),

the code will recursively and iteratively determine the amount of thresholding required to achieve

85% compression. The source code listed in Appendix E was added to the Do Work routine of the

Malvar wavelet program.

The thresholding package first determines the number of zeros required to obtain the required

percent compression. It then selects an initial threshold equal to the percent compression times

3-15

the maximum coefficient value (so that the initial threshold increases as the compression ratio

increases). The procedure then thresholds the coefficients by setting a temporary value to zero and

compares the number of zeroed temporary values to the number of zeros required. If there are too

many zeros, the threshold is decreased and if there are too few zeros, the threshold is increased.

Once the correct number of zeros are achieved, the program drops out of the infinite loop and

the coefficients are multiplied by the temporary values (1.0 if value is retained or 0.0 if value is

thresholded).

Data Rates

The overall goal for coding schemes is to reduce the data rates necessary to transmit essentially

the same information. How is the compression ratio related to the actual data rate? There are

two areas that need to be addressed in order to calculate the data rate. The first is how many

bits will be required to represent the spectral coefficients that will be transmitted. The second

factor is determining the overhead required to relate the coefficient to its position in the window

(for example, was the sample the first, last or some other harmonic within a given frame). The

typical sampling rate for communications equipment is at 8 kHz (2), therefore, all experiments were

performed at the 8 kHz rate. The DARPA TIMIT Phonetic Speech database used for this research

is sampled at 16 kHz so it was down sampled to 8 kHz prior to processing.

The coefficients of the Malvar wavelet have a symmetry such that only half of the coefficients

need to be used. For a window of size N, the complex-valued Malvar wavelet, like the FFT, will

yield N/2 unique magnitude and N/2 unique phase coefficients. The amplitude and position of

these coefficients must now be transmitted using the least number of bits possible.

Amplitude Information: Initial experiments were performed with full 32 bit accuracy of

the coefficients. Compression of 90% to 95% of the coefficients (magnitude and phase) resulted in

speech files that had a mechanical tone of voice with ringing bell-like artifacts. The speech may

3-16

have warbled and had a "spacey" sound to it, but it was still intelligible. The higher compremion

was slightly lower quality with more sudden starts and stops and more evident clicking, but the

overall intelligibility was the same. The number of bits to code the magnitude and phase ampli-

tudes were then reduced and the effects on the numerical and graphical errors and on the speech

quality/intelligibility were recorded. Lloyd's algorithm was used to determine the quantization

levels of the magnitude and phase (13).

Lloyd's algorithm starts by computing the mean of all the elements in the data to form a

codebook of length one. Larger codebooks are then generated by splitting the previous codebook

(replacing each codeword by two codewords, separated by a small number), and going through a

process of improving the codebook until convergence is reached. This process works as follows: The

squared distance is computed between every element of data and every codeword. Each codeword

is then replaced by the mean of all the elements of data for which that codeword is the nearest

neighbor. The mean square error (MSE) that results when each element of data is replaced by the

nearest element in the codebook is computed. The improvement loop stops when the difference

between the old distortion (MSE) and the new distortion, divided by the old distortion, becomes

less than the convergence threshold.

Optimally quantizing a set of coefficients and then using the same data to transform the

speech file would not be a fair test because only one set of quantization levels is used in a voice

coder for ALL speakers. To avoid the use of an optimal quantization, Lloyd's algorithm was used

to quantize one speech data file and those levels were used to transform a second speech file. In the

first example, sixteen levels (4 bits) were used for both the magnitude and the phase information.

For 4 bit quantization of magnitude and phase information, the cutoffs are more dramatic at the

start and stops than the 32 bit quantization, however the overall quality is almost as good as the 32

bit reconstruction. Experiments involving several other combinations of magnitude and phase bits

3-17

(denoted magnitude/phase bits) were performed. The errors amociated with a few representative

combinations of magnitude and phase bits are summarized in table 3.4.

Ma g/P7ase Bits Relative L2 @90% RMS 090% Relative L2 095% RMS 095%
32/32 0.21783 0.47239 0.33298 0.71801
4/4 0.12256 0.79731 0.24137 0.88967
5/3 0.26711 0.62891 0.35930 0.79482
4/3 0.10249 0.81426 0.28627 0.90497
5/2 0.38574 0.79464 0.44870 0.92421
4/2 0.30004 0.94257 0.39389 1.01829
3/2 0.23641 1.33182 0.08885 1.36057

Table 3.4. Reconstruction Error of the CMW Using 90% and 95% Compression and Varying the
Number of Bits to Represent the Magnitude and Phase

The number of phase bits were decreased for some experiments because speech signals are

often not as sensitive to the phase content of the transform coefficients. This approach helped to

improve the signal reconstruction without increasing the bit rate. For example, using 5 bits for

magnitude and 3 bits for phase (5/3) produced a better sounding reconstruction (and lower numer-

ical errors) than using 4 bits for both the magnitude and phase. By comparing the reconstructed

signal to the required bic rate, the different coding schemes could be compared. The techniques

were compared back to the 4 bits magnitude/4 bits phase (4/4) case at 95% compression; signal

reconstructions that were clearly worse and techniques requiring a higher data rate were thrown

out. Two of the quantization schemes appear to be superior to the other methods tested; the

5/3 scheme at 95% compression and the 3/2 technique at 90% compression have better sounding

reconstructed signals than the baseline 4/4 technique and also require a lower data rate to achieve

the reconstruction.

Note that the numerical error values do not always point toward the best audio reconstruc-

tion (25). The L2 values are not consistent with the RMS values and neither criteria always points

to the higher quality speech signal. The 3/2 (90%) case has a much higher RMS error, but a

lower L2 error than the 5/3 (95%) case. The reconstructed quality and intelligibility of the 3/2

3-18

(90%) signal is slightly better than the 5/3 (95%) reconstruction. However, the 5/3 scheme requires

slightly fewer bits per second than the 3/2 case. The original speech signal and the 5/3 and 3/2

reconstructions are plotted in figures 3.5 and 3.6.

4000-

-lowxlo

Figure 3.5. Utterance of the Sentence "She had your dark suit in greasy wash water all year"

Position Information: The spectral position information can be coded and transmitted in

many different ways. Two methods were evaluated:

1. Sending the position information with each individual non-zeroed coefficient.

2. Transmitting a large positional word prior to each window that tells where the non-zeroed

coefficients belong.

The first method requires enough bits for each coefficient to account for every possible position. A

128 point window requires a seven bit word for each coefficient (27 = 128 possible positions) (2).

The second method transmits the same information, but sends it prior to the window instead of

3-19

"0-

4OOO

*2000-

-0•

)O 0.5 1 1.5 2 2.5

S~xlO'

(a)

6000

23000

-3000

40) 0ý 1 1.5 2 2.5
W O x lo'

(b)

Figure 3.6. Reconstruction of Sentence Using (a) 3 Mag Bits/2 Phase Bits at 90% Compression
and (b) 5 Mag Bits/3 Phase Bits at 95% Compression

3-20

with each coefficient. A 128 point window would have a 128 bit word that would contain a I at

the positions where coefficients were being transmitted. At compression ratios of 90% or more, the

first method generally requires the fewest number of bits because of the low number of coefficients

which are being transmitted. The relationship between the length of the window and the amount of

compression demonstrates which method to use. Method two always sends the number of positional

bits equal to the length of the window, while the first method sends (I - c)L log2 L bits (where L is

the window length and c is the percent compression). Therefore, for a given length of window, if:

c > I 1 (3.16)
log 2 L

then it is most economical to transmit the explicit position with each term (method one). If the

compression is less than the value given in equation 3.16, then the positional vector should be

transmitted. For windows of length 128, the positional vector would not be more advantageous

until a compression ratio of 85% or lower was used.

The first method still requires almost half of the system's bit rate to be used just for positional

information. The window can be broken down into smaller frames to reduce the amount of overhead.

For large compression ratios, there will be many zeros within this information word. Instead of

transmitting 7 bits to give the exact position of the coefficient, the position difference between

two coefficients could be transmitted. This difference would be limited to a portion of the larger

window. For example, the 128 point window can be broken into eight 16 point sub-windows. If

there are no coefficients within 16 samples, then a one bit "dummy" coefficient (equal to zero) is

inserted to hold the 16th samples place. Thus the total bits sent prior to the window can be reduced

with a "divide and conquer" approach (32) (35:4-4). The maximum number of "dummy" bits to

break a 128 sample window into 16 sample sub-windows is seven (need a "dummy" at only one end

point). The symmetry of the complex-valued Malvar wavelet coefficients can be used to reduce the

amount of positional information required. The position can be conveyed with a six bit word (64

3-21

sample v indow with symmetry). This can be transmitted with eight eight-point sub-windows and

only four "dummy" bits will be required for the 64 sample window.

Examples: The bit rate for the transmission of the spectral coefficients can be computed by

following the above steps. This example will assume a sampling rate of 8 KHz, 128 point windows,

3 bits/magnitude coefficient, 2 bits/phase coefficient, and 90% compression.

1. 8000 samples/sec / 128 samples/window - 62.5 windows/second.

2. 90% compression of a 128 point window * 12 samples/window.

3. Symmetry of CMW *- 6 samples/window

4. 5 bits/sample (magnitude and phase of coefficient)
+ 3 bits/sample (coefficient position within 8 point sub-window)

8 bits/sample

5. 4 bits/window ("dummy" coefficients)

6. (8 bits/sample)-(6 samples/window) + (4 bits/window) = 52 bits/window

7. (62.5 windows/second).(52 bits/window) = 3.25 Kbits/second

The next example utilizes 5 bits/magnitude coefficient, 3 bits/phase coefficient, and 95%

compression:

1. 8000 samples/sec / 128 samples/window = 62.5 windows/second.

2. 95% compression of a 128 point window * 6 samples/window.

3. Symmetry of CMW =* 3 samples/window

4. 8 bits/sample (magnitude and phase of coefficient)
+ 3 bits/sample (coefficient position within 8 point sub-window)

11 bits/sample

3-22

5. 4 bits/window ("dummy" coefficients)

6. (11 bits/sample).(3 samples/window) + (4 bits/window) = 37 bits/window

7. (62.5 windows/second)-(37 bits/window) = 2.31 Kbits/second

Even with the higher number of bits/coefficient, the higher compression leads to a lower data

rate. The 95% compressed version did not have the same quality output that the 90% version

had, but the bit rate is significantly reduced. The CMW competes very well with current speech

encoders. Typical low bit rate speech encoders used today such as the LPC-10 coder (used in the

STU-III secure voice system) utilizes 2400 bps (2).

The lapped transform allows us to overlap the data and smooth the boarder regions without

increasing the number of windows transmitted per second. This is due to the fact that the Malvar

wavelet "folds" the overlapped data back into the window before it calculates the coefficients used in

the transmission. The number of bits/second without compression (but accounting for symmetry)

would have been:

(8 bits/sample)(64 samples/window)(62.5 windows/second) = 32 Kbits/sec

The percent compression of the overall bit rate is thus 72% versus the original 95% compression

ratio of the transform coefficients. This appears to be a dramatic decrease in compression, however

the 95% ratio was simply the number of coefficients compressed. It did not take into account the

positional information or the number of bits/coefficient. The 72% compression achieved still yielded

a data rate less than 2400 bps.

Further reductions in the bit rate may be obtained by using more elaborate coding and com-

pression techniques. Huffman developed a method to minimize the expected number of transmitted

bits (9). He optimized the bit pattern by linking the frequency of occurrence of a given value to

the number of bits to code that value such that;

3-23

Expected Number of Bits = (Frequency of Occurrence).(Bits for the Values)

The Malvar wavelet has also been used to find voicing probabilities in speech patterns (39). The

Malvar wavelet provides an automatic segmentation into phonetic units, such that the frequencies

center of mass associated with each phonetic unit can be used to get a voiced/unvoiced segmentation

algorithm. Voiced and unvoiced speech can then be coded and compressed differently to produce

a higher quality reconstruction at a lower bit rate.

Additional Promising Applications

A complex-valued lapped orthogonal transform would be a powerful tool for image process-

ing. A non-orthogonal complex-valued lapped transform (CLT) has been defined and utilized by

Young and Kingsbury to perform frequency-domain motion estimation (41). Young and Kingsbury

extended the lapped transform to form a complex transform because data shifts in the spatial

domain have more meaningful interpretations in the complex domain (primarily as phase shifts of

the complex coefficients) (41). The CLT gives smoother motion fields than the traditional block

matching, due to the use of overlapping windows with no block edge discontinuities. The complex-

valued lapped orthogonal transform proposed by Suter and Oxley may yield even clearer motion

fields because of its perfect reconstructive properties.

There are many image processing applications which could be improved through the use of a

complex lapped orthogonal transform, the CMW. The MITRE Corporation has proposed an ob-

jective image quality measure that is highly dependent upon the reconstructive capabilities of the

short time Fourier transform (20). This quality measure takes the two dimensional Fourier trans-

form of an image, bandpass filters it, and reconstructs the image with another Fourier transform.

Potential applications in the image processing field are important for the complex Malvar wavelet.

RADAR signal analysis is another field that could take advantage of an orthogonal complex-

valued transform. Phase information is very important to the study of RADAR signals and the

3-24

Fourier transform is the basic tool for analysis of the signals. Many spectral estimation techniques

are used to improve the resolution and accuracy of the FFT. The complex-valued Malvar wavelet

could assist these techniques.

Summary

A complex Malvar wavelet, which maintains orthogonality, was introduced. This algorithm

was programmed in the DOD standard language of Ada. The code was tested and evaluated to

demonstrate that the transform produces perfectly reconstructed signals. The CMW, with high

compression ratios, was shown to be able to produce intelligible speech and to compete with current

low bit-rate vocoders. Imaging and RADAR processing techniques for the CMW were introduced

as possible applications.

3-25

IV. Real- Valued Malvar Wavelets

Introduction

The sinusoidal Malvar wavelet (or generalized lapped orthogonal transform) is developed in

much the same way as the complex-valued Malvar wavelet, however the algorithm for the sinusoidal

wavelet is more complicated because it is a real basis function and it allows for variable size windows

and overlaps. The complete algorithm is presented in (34) and (26). The benefit of using this real-

valued basis is that the coefficients will be, by definition, real. Therefore if the same amount of

information can be sent with one real coefficient vice two coefficients (magnitude and phase), there

is a potential for a decrease in the bit rate. The question that must be answered is whether the

sinusoidal MW, at a given percent compression, can produce the same quality signal as the complex

MW. The following steps summarize the derivation of the sinusoidal Malvar wavelet as proposed

by Suter and Oxley (34):

1. Define a Basis. The basis function is defined as the even and odd extensions of a sinusoidal

basis:

0 , oo < < ai- c3

-J2-aj sin (r(k +), a -=< <]a

,k()= - sin (Fk2+)[----] aj < x < aj+2 (4.1)
2 sin (7r(k + ½)2 r -

,7 in+7ra+) / a i+1 < X < aji+1 -+ .i+
+ +2 /a

oa,+l + .j+1 <_ < oo.

Note that the odd/even extensions have been reversed from the complex-valued case. It does

not matter what order the extensions are taken, as long as the equations remain consistent

throughout the algorithm.

2. Obtain data for some interval; aj - ci _< z < aj+l + cj+l as shown if figure 4.1.

4-1

aj- ci a a1 +t Ea 0+1 - E+l aj+l a1+1 + j+l

Figure 4. 1. Partitioned Axis

3. Multiply the data by the window (tv,(z)).

0 -oo<z<a,--E,

1j (z, a,+cj <x<ai+1-Lj+l (4.2)

cos(' l- (aj+1 - E+l]}) a, l - cjl: x < a3.~. + ci~1

o , Gi +,+EJ+l 5x<<oo.

4. Fold the sequence; fold in edges upon itself.I (x)wj (x) -s(2a, - x)wj(2aj - x) ,a 1 : x < aj +cj

s(x)wj(Z-)+ s(2aj+l - x)wj(2aj+, - x) ,aj+l - e,+i :5 x a

5. Define a new array.

I8jI = Hijisin(W) for 1=O,l,...,Ni (4.4)

6. Define the even extension of

#j {1Iz O<l<Nj-1 (4.5)

,6j2N-l Nj<1•2Nj-1

4-2

7. Perform an FFT of length 2Nj on this even extended sequence.

DIk = Re 2 .,-ei2r/N (4.6)

8. Interpret the results of the FFT.

a j,o = 2-NjDjlo (4.7)

aj,k = aj,k-1 + 2V/2'Djs (4.8)

9. Define the odd extension of the spectral coefficients.

= &j, , 0<k<Nj-II-aj,2N,,._l , Nj Ik<2Ni-1

10. Perform an Inverse FFT of length 2Nj on &j,k and define.

Hj,, = V"-NIm (N 2N j,ke-1 (4.10)

11. Reconstruct the signal by unfolding the data and dividing by the window to fold the edges

back out.

2wij(-~j.,)) j,i = aj

= wj(2aj - zjl)Hj-i,Nj_,_l + wi(zxjH j ,e) aj < zj,i < aj + cj
S H,, I-jc•-x~:ajjc~

wj (zt)H.j, - wj(2aj+l - Zj,1)Hj+1,Ni- aj+l - i•j+I < zxj < aj+l

(4.11)

4-3

Validation

The first step in validating the proposed system is to ensure that the basic Malvar wavelet

code is correct. The program written by Raduenz was not perfect because he was concerned with

only integer values of signals and the prime emphasis of his work was not on comparing the rebults

of different systems. The Ada code was significantly modified so that it would give accurate results

for the comparison of multiple systems. The complete program is provided in Appendix C. The

important modifications include:

(1) Allow the system to read in and write out floating point values (with accuracy to the 12th

decimal place).

(2) Enable the system to perform finite length processing without having to duplicate data or pro-

cess intervals multiple times. This was achieved by "wrapping" the end points of the signal, so that

the first value was considered as the point immediately after the last value of the data set.

(3) The starting and stopping points were adjusted to correctly match the algorithm for equa-

tions 4.10 and 4.11.

(4) The percent compression and error calculations code (discussed in Chapter III and listed in

Appendix E) were added to the baseline program.

The original code produced normalized RMS errors of about 10-5 when reproducing a simple

unit step or sinusoid. The reproduction of a unit step is shown in figure 4.2a. This shows that the

overall reproduction is very close, but not perfect and that the final window is being distorted by

the algorithm. The modified program's output is plotted in figure 4.2b. This is almost exactly equal

to 1.00..0 and has no distortions in the overlaps. The normalized RMS error for the reconstruction

is just over 10-13. The reconstruction errors for three different signals are given in table

4-4

1.001

1.0006

1.0006

1.0004

1.0002

0.9996-

0.9996

0.9994

0.9992-

0.91
0 50 1000 1500 2000samples

1.001

1.0006

1.0006

1.0004

1.0002

0.9996-

0.9996

0.9994-

0.9992

0.9 9 1
10 500 1000 1500 2000

(b)

Figure 4.2. (a) Original Malvar wavelet and (b) the Modified MW Programs' Reconstruction of
the Unit Step Function

4-5

Input Data Relative L2 L. RMS RIV (1.0 +
Unit Step 1.835z10 5- 1.877z10 0- 2.079z10-' 3 -0.051z10-'7
Sinusoid 1.849z10- 8 1.876z10-10 1.879z10- 1 3 -0.074z10 2-1

Utterance of "DARK" 1.615z10-5 3.018z10-10 2.886z10- 12 -0.037z10-12

Table 4.1. Reconstruction Errors Associated with the Real-Valued Malvar Wavelet

Compression

Raduenz's work suggested that the homomorphic filtering process may be superior to the

use of the sinusoidal Malvar wavelet (LOT) alone (26:4-30). The homomorphic filtering allowed

Raduenz to obtain better reconstruction of speech signals at comparable compression ratios. The

goal of this research is to verify those results, investigate other homomorphic filters to determine

if there is a best method for a given signal, and then explain why a particular method(s) worked

best.

This chapter outlines how the problem was attacked. It outlines the different types of homo-

morphic filters evaluated, the technique used to threshold (compress) the resulting coefficients, the

error criteria used to evaluate the results, and finally the results of the experiments.

Homomorphic Filters

In its most general form, a homomorphic system can be represented by algebraically linear

(homomorphic) mappings between the input and output signals (22:771). This system can then

be decomposed into three separate homomorphic systems; a characteristic system, a linear system,

and the inverse characteristic system.

There were three distinct systems used in this research. Only one of them was technically a

homomorphic system. System 1 is shown in figure 4.3. The generalized Malvar wavelet (GMW)

acts as the characteristic system and five different functions were used as the linear system. The

five linear filters (and their inverses) that were utilized include:

4-6

Figure 4.3. System 1: Homomorphic System Utilizing the Malvar wavelet

1. No Linear Transform: Ix

2. Square Root: (Square)

3. Natural Logarithm: (Exponential)

4. 10z + 1: ((z - 1)/10)

5. Arc Hyperbolic Sine: (Sinh)

where, hyperbolic sine and arc hyperbolic sine are defined as (31):

sinh(z) = 0.5 * (e - e-) (4.12)

sinh-1 (z) = ln(z + v2+ 1) (4.13)

The three systems consist of an analysis bank, which transforms the coefficients prior to

transmission, and a synthesis bank, where the transmitted coefficients are reconstructed back into

the original signal. For System 1, the analysis bank is composed of the forward GMW followed

by one of the given linear filters and then an inverse GMW. The coefficients from this bank are

then to be compressed (thresholded at a certain level), transmitted, and sent to the synthesis bank

for signal reconstruction. The synthesis bank is made up of a forward GMW, the inverse of the

linear filter used in the analysis bank, and finally an inverse GMW. System 2, figure 4.4, represents

the system used by Raduenz. This system is comprised of the GMW, a linear filter, and another

forward GMW. The synthesis filter is constructed from the inverse GMW, an inverse linear filter,

4-7

-- ') LOST) GOwmm) -"x'lm)

Figure 4.4. System 2: Homomorphic-Like System Utilizing the GMW

LASv) H G~unv) 31m

Figure 4.5. System 3: Malvar Wavelet with Linear Filter

and finally another inverse GMW. The final system (system 3) used in these experiments consists

only of the GMW followed by a linear filter as shown in figure 4.5. There are 15 different systems

to be analyzed; five different linear filters in each system. Raduenz performed the homrnomorphic

filtering by completing the first forward GMW, taking the natural logarithm of all the GMW

coefficients, and then performing another forward GMW. In order to be able to perform the linear

filtering in real-time, a procedure was added to the GMW program to implement the linear filter on

each window of data after the characteristic system (GMW) had transformed that given window.

The linear filter will then pass the set of data on to the next function (Inv GMW for System 1).

To accomplish this, a step was added to the procedure Do Work of the Lapped Transform program

that calls the new procedure Linear Transform. The steps which comprise the Linear Transform

procedure in the Lapped Transform program are found in Appendix D.

The first time the LinearTransform procedure is called, the value of Inverse is set to zero so

that the forward transform is performed. Subsequent times the procedure is called, Inverse is set

to one, so that the inverse transform is used. The type of linear transform (log, lz-, etc) is selected

by the user, prior to the start of any processing. Note that the phase of the GMW coefficients do

4-8

not have to be tracked because the coefficients of the GMW (as defined at the beginning of this

chapter) are always real-valued. However the positive and negative values could be expressed as a

+/- or 0*/180* phase. The negative values pose a problem for the logarithm and the square root

functions. This could be corrected for by expressing the functions with a phase term and utilizing

the complex function, log[X(f)] = inIX(f)l + jLX(f). In order to avoid any kind of phase term,

the coefficients can be offset so that the minimum coefficient value is 1.0 and the minimum log

amplitude is therefore 0.0. The offset can then be removed after the inverse natural log (e'). For

example, if there exists a set of coefficients p(z), an offset of y = minimum[p(z)] + 1 is used with

the logarithm:

1. Coefficient value p(z)

2. Add an offset of y: (p(z) + y)

3. Take the natural log: ln(p(z) + y)

4. Perform additional linear transforms: (Lapped Trans or Inv LOT)

5. Take inverse natural log: e(P(?)+Y) = p(z) + y

6. Subtract the offset: p(z) + y - y = p(z) + (min + 1) - (min + 1) = p(z)

This same procedure can be applied to the square root, with the offset equal to the minimum

coefficient value, because the square root of zero is defined. This method works well when utilizing

all of the coefficients. However, compressing the coefficients (setting coefficients to zero) introduces

a non-linearity to the system. This non-linearity means that the minimum valued being carried

through the system will distort the reconstructed signal. A third method can be used to track the

sign of the original coefficients. The sign (+/-) of the original coefficient is stored in a vector and

then the absolute value of the coefficient is used with the function. The sign is then put back on

the signal after reconstruction (e' or z 2). The benefit of this method is that the sign vector will

not distort the resulting signal when coefficients are eliminated.

4-9

System Validation

Each complete system must now be validated to ensure packages are working together prop-

erly. To validate each program and linear transform system, known signals were passed through the

systems with 0% compression. Perfect reconstruction is expected when there is no lose of informa-

tion (no coefficients thresholded). Allowing for some round-off error, each filter and linear system

produced perfectly reconstructed signals. The speech signals sounded identical and reconstruction

errors were very low. The numerical error criteria discussed in Chapter III were used to compare

the results.

Numerical Error Tests: The reconstruction errors (L2 , L,,, RMS, and RIV) were collected

and compared. System 1 (GMW, Linear Function, Inv GMW: see figure 4.3) and system 2 (GMW,

linear Function, GMW: see figure 4.4) produced nearly identical output errors. There are many

different ways in which both systems may be coded as part of the lapped transform routine, however

they always produced very similar levels of reconstruction error. System 3 (GMW, Linear Function:

see figure 4.5) also provided near perfect reconstruction at 0% compression (using 125 point windows

with 50 point overlap). The numerical errors have been tabulated below for a 2000 point sinusoidal

input.

Linear Function Relative L2 IL_ _ _ RMS RIV (1.0 +
1 2.284x1O-* 6.037r10 0- 5.772z10-x ' -7.555z10-"
vz- 3.058z10- 5 7.981x10-1° 8.626z10-' 2 -1.354z10'- 0

log(x) 2.327z10- 5 5.052x10- 10 5.283x10-1 f -7.840z10 1-
l0z+ 1 2.284x10-5 6.090xa10- 1 5.818z10- 12 -7.555z10-11
sinh(x) 2.915z10- 5 7.261z10 0-' 7.736z10-1 2 -1.230z10 1-

Table 4.2. Reconstruction Errors Associated with System 1

All four functions (l, Nz, log(x), lOz+ 1, and sinh(z)) produced identical outputs for system

3. These reconstructed signals had lost very little information and were perfect reconstructions of

the originals. The output signals produced by system 1 and 2 were not as well defined. The linear

functions (lz, and 10z + 1) produced nearly identical output signals. Note that these functions

4-10

Linear Function Relative L2 L,, RMS RIV (1.0 +)
1 2.464zI - 6.525zi0-10 5.876xI0 -' -8.795zi0-11

3.081zi0-5 6.472:10-10 7.778:10-12 -1.374zi0-0°
log(t) 5.932z10-5 1.954:1O-9 2.800z10- 1 1 -5.094z10-10
loz + 1 2.464t10-5 6.550z101-0 5.880z10-12 -8.795z10-1
sinh(z) 3.396z10-5 7.532z10-10 9.419:10-12 -1.670z:10-1

Table 4.3. Reconstruction Errors Associated with System 2

Linear Function Relative L2 L,. RMS RIV (1.0 +)
1 1.615z10 3.018410-1 2.886z10-l -3.777z10-

V/• 1.615zI0-5 3.018:10-1o 2.886z10-12 -3.777z0-11
log(e) 1.615z10-5 3.018:10-10 2.886:10-12 -3.777z10'-
10 + 1 1.615410-5 3.018:10-1° 2.886z10-12 -3.777z0ll-
sinh(z) 1.615z10-5 3.018410-10 2.886:10-12 -3.777z10-11

Table 4.4. Reconstruction Errors Associated with System 3

also had the lowest reconstruction errors for system 1 and 2. The other functions produced slightly

higher errors than the lz and 10 + 1 functions. The recorded errors are so small that they are

very sensitive to the number of flops (multiplies and adds) performed by the system. System 3, the

most basic procedure, uses the least number of flops and thus has the lowest reconstruction errors.

System 2 has the greatest number of flops because of the way the system had to be constructed. The

original lapped transform program was not written to have two forward transforms in succession,

so it has more coefficient calculations than do the other two systems. It follows then that system

2 has slightly higher reconstruction errors.

All of the reconstruction errors are extremely small (the largest normalized RMS error =

2.800z10-11) and easily demonstrate the perfect reconstruction properties of the systems.

Graphical and Audio Tests: Graphical and audio tests were also made to measure the signal

reconstructions. These again showed how well all of the systems were restored when there is

no thresholding of the coefficients. Figure 4.6 shows the sinusoid that was used for the initial

testing of the systems. Figure 4.7 (a) is the output of system 3 using no linear function (GMW,

4-11

Inverse GMW). The output of the systems using other functions (log, sinh, etc) were identical to

figure 4.7. Figure 4.7 (b) shows the output from system 1 using no linear function (GMW, Inverse

GMW, GMW, Inverse GMW). This restoration is also perfect. The outputs of the other functions

performed virtually the same as the lz case.

0.6

0.6-

0.4

0.2jo
-0.2

*0.4

-0.6-

-0.8-

0100 200 300 400 500

Figure 4.6. Original Sinusoid Signal

After testing the system with a step function and a sinusoid, speech files from the TIMIT

database were used. Words and parts of words that were 2000 points long were tested with systems

1, 2, and 3. This allowed for more complicated signals to be transformed by the programs and to

actually listen to the results instead of simply looking at numbers and plots. Figure 4.8 shows the

graphical display of the utterance for the word "dark." The reconstructions utilizing system 3, and

system 1 are plotted in figures 4.9(a) and (b).

The three plots of the word "dark" look very much the same, but that does not guarantee

that they will sound identical. When played through the Ariel audio interface, the words could

4-.12

0.8/

0.6

0.4

0.2

j°

-0.2

-0.4

-0.6

-1.8

0 100 200 300 400 500

(a)

1

0.8-

0.6

0.4

0.2

10
-0.2

-0.4

-0.6

-0.8

0 100 200 300 400 500

(b)

Figure 4.7. (a) GMW (System 3) and (b) Homomorphic (System 1) Reconstruction of the
Sinusoid

4-13

4000-

-2000-

200 400 600 800 1M 1200 1400 1600 1800 2000

Figure 4.8. Utterance of the Word "Dark"

not be differentiated. However, short one syllable words often sound alike because there is so little

time for the ear to differentiate them. The next step was to utilize entire sentences of speech. The

results from transforming entire speech files was very similar to the previous results. All of the

systems provided perfect reconstruction using all criteria; numerical values, plotting, and listening.

Listening provided the least differentiation between the systems. The utterance, "She had your

dark suit in greasy wash water all year," was reconstructed using the three systems. All provided

perfect reconstruction of the speech signal (the worst normalized RMS error was 10-'). All of the

signals sounded identical when played via xwaves. There were no added noise, pops, or spikes in

the recreated signals.

Observations: The previous section demonstrates that perfect reconstruction was possible

using homomorphic filtering techniques with Malvar wavelets. The results also demonstrates that

the most basic system, consisting of only the GMW and the Inverse GMW, yields the best results

4-14

6000

5000-

4000

3000

j2000-

-1000-

-2000

-3000
200 400 600 800 1000 1200 1400 1600 1800 2000

(a)

BOOC5000-

4000-

3000

~2000-

11000-

-1000-

-20001

"3 200 M• 600 1000 1 " 100 1W 2Msamples

(b)

Figure 4.9. (a) System 3 and (b) System 1 Reconstruction of the Word "Dark"

4-15

6000

5000

4000

2000-

30

-1000-

-2000

-3000-

o 0.5 1 1.5 2 2.5
smm Xl0

(a)

6000

5000-

4000-

3000-

2000-

1000-

200-1000

-2M -•

-4000 -
0 05 1 1.5 2 2.5

san"MI xlo'

(b)

Figure 4.10. (a) Utterance of the Sentence "She had your dark suit in greasy wash water all year"
and (b) Reconstruction of Sentence Using System 1 (lx)

4-16

6OOOC

5000

4000

3000

low.
0

01O 0.5 1 1.5 2 2.5

xlOI

(a)

4000-

"3000-

2000-

'1000-

10

-1000

-2000

43000

I i0 2 25
samples xo'

(b)

Figure 4.11. (a) System 2 (log) (b) System 3 (sinh) Reconstruction of the Sentence "She had your
dark suit in greasy wash water all year"

4-17

at zero compression. This is due to the fact that the basic system had the fewest multiplies

and additions. Another system may show much greater promise when there is a high degree of

compression of the coefficients.

To observe the effects of compression, error criteria was collected using 10 different data

sets. The data consisted of five different sinusoid signals and five different speech signals. The

sinusoids varied in frequency and complexity, while the speech segments were short words and

sounds consisting of both voiced and unvoiced speech: "dark," "she," "wash," "s," and "ear."

All ten signals are plotted in Appendix A. The amount of compression was also varied for each

signal: 0%, 80%, and 90% compression were used for each data set. This was done to ensure that

a particular system does well at both high compression rates as well as at zero threshold. A total

of 30 data files were used for each transform system (each of the ten data sets compressed to three

different levels). A number of variables were held constant throughout the experiments, including:

the data length (1920 points), window size (128 points), the amount of overlap (1 point), and the

basis-set (sinusoidal basis described in Chapter II).

Tables 4.5, 4.6, and 4.7 list the average reconstruction errors for systems 1, 2, and 3 respec-

tively. The variance of each of the error criteria are recorded in tables 4.8, 4.9, and 4.10.

Linear Function Relative L2 I Loo RMS RIV
1 0.375381 161.326 1.27688 0.942922
10z + 1 0.398733 182.457 1.10785 0.939677
Vr 0.413016 192.152 1.03613 0.933322
log(z) 0.374349 428.568 1.92029 0.964840
sinh(x) 3.22121 7757.98 31.1507 0.993657

Table 4.5. Average Errors Associated with System 1

The results of the 450 experiments show that the system which consistently performed the

best was system 3 (with the non-logarithmic functions; 1, 10x + 1, and V I). At every level of

compression, with every type of signal, the non-logarithmic system 3 reconstructed the signals with

the lowest numerical errors. It is expected that these functions would be identical for system 3,

4-18

Linear Function Relative L2 Lo, RMS RIV
1 0.363028 213.032 1.24357 0.950170
lOz+ 1 0.398701 201.787 1.09956 0.948737
V1 0.406773 178.925 1.01884 0.940515
log(z) 0.400874 370.767 1.74659 0.956094
sinh(z) 2.97311 6699.29 27.8690 0.996466

Table 4.6. Average Errors Associated with System 2

Linear Function Relative L2 L,, RMS RIV
1 0.104472 213.757 0.685003 0.998475
lOz+ 1 0.104472 213.757 0.685003 0.998475

S0.104472 213.757 0.685003 0.998475
log(z) 1.03833 215.032 0.687536 1.14262
sinh(z) 1.03833 215.032 0.687536 1.14262

Table 4.7. Average Errors Associated with System 3

because the system (GMW, L --* Inv L, Inv GMW) performs the inverse functions immediately

after the forward function (with only compression in between). The logarithms (ln(x) and sinh(x))

have a higher distortion across the compressions. The reason for this is that the natural logarithms,

due to the nature of the function, are thresholding some higher coefficients while keeping smaller

ones (for example I log(99)1 < I log(.01)1). This distortion could be avoided by adding a term to

the coefficients to ensure a minimum value of 1.0 but, as stated previously, this introduces another

distortion when the coefficients are compressed. The sinh function works relatively well (same

as the In function) with system 1, but it distorts the signal quite badly when there is a second

transform following the sinh (systems 1 and 2).

Linear Function Relative L2 L_ _ _ RMS RIV
1 0.123228 81316.5 4.56385 8.22438x10-
lOz+ 1 0.125366 98737.7 4.36783 5.35678z10-3

S0.128805 114023. 3.16373 1.15164z10-2

log(i) 0.104304 584534. 11.4624 6.07249z10-3

sinh(z) 21.1635 2.37950x 10+3 4027.31 4.16942z10-2

Table 4.8. Variance of Errors Associated with System 1

4-19

Linear Function Relative L 2 L. RMS RIV
1 0.114239 132930. 4.28904 6.35135zI0-a

lOx + 1 0.116201 122780. 4.01349 7.76930z10- 3

S0.122680 102405. 3.11571 8.78877zi0 3-
log(x) 0.124123 438373. 9.30463 1.21154zi0-2
sinh(z) 18.6011 1.94071*10+" 3556.47 3.73096z10-2

Table 4.9. Variance of Errors Associated with System 2

Linear Function Relative L2 Lo RMS RIV
1 0.0125197 151753. 1.44600 3.89581z10-
10 + 1 0.0125197 151753. 1.44600 3.89581z10-6

Vr 0.0125197 151753. 1.44600 3.89581z10-6
log(z) 5.73403 148896. 1.42399 0.162145
sinh(z) 5.73403 148896. 1.42399 0.162145

Table 4.10. Variance of Errors Associated with System 3

System 3 outperforms the other systems in the L2 , RMS, and RIV criteria. The Lo, value

(the maximum point-wise difference between the original and reconstructed signal), alone, is not a

good indicator of reconstruction quality. The L.. value does indicate whether the output signal has

many large spikes in the reconstruction. The RIV criteria produces the most accurate reproduction

when its value is equal to one (information in reproduction = information in original). The RIV

value should generally not be greater then one, because this would indicate information being added

to the signal, however many of the systems distorted the signal badly enough to cause the RIV

criteria to be greater than one. Therefore, the average RIV can not be used to accurately determine

the quality of the reconstructed signal.

The variance (see table 4.10) of system 3's error values are also the lowest for the L2 , RMS, and

RIV criteria. The Le, case is the one criteria where system 1 has consistently lower values. System 3

(logarithm) produces incongruities and spikes at the window boundaries at high compression ratios.

System 1 smoothes out these spikes and thus reduces the maximum point wise error. Figure 4.12(a)

shows a portion of the reconstructed "s" using system 3, logarithm, and 80% compression. The

4-20

same data is reconstructed with system 1 in figure 4.12(b). The large spikes in the first figure have

been greatly reduced by the additional Malvar wavelet manipulations of system 1.

Not only are the numerical errors lower for the system 3 case but the graphical and audio

reconstructions are also superior to the other methods. The L,, measure does not have much

bearing on the total sound or graphical quality of the reconstruction. Some of the large spikes

manifest themselves as pops in the reproduction, but the overall quality of the signal is superior

with system 3.

As the amount of compression increases, the reconstruction errors at the window boundaries

lead to higher total reconstruction errors. This can be seen by taking a closer look at a given

boundary point for a signal with increasing levels of data compression.

Figures 4.13 and 4.14 show the reconstruction of a sinusoid with compression levels of 0%,

80%, and 98% respectively. Each window is 128 points long, so the first window edge falls at point

128. The degradation of the quality of reconstruction is easily seen as the amount of compression

increases. This decay in the quality of reconstruction is possibly due to the minimal amount of

overlap (1 point) being used for these experiments. One of the primary benefits of the Lapped

Transform is being able to increase the amount of overlap without increasing the amount of data

that must be transmitted. This problem raises two new questions.

1. Will an increase in the amount of overlap produce a more accurate recreation of the original

signal?

2. Is there an optimal amount of overlap which should be utilized?

These questions will be addressed and tested in Chapter V.

These systems were used to transform entire speech files from the TIMIT database. Plotting

and listening to the reconstructed speech led to the same conclusion as above. System 3 (with

a non-logarithmic function) produces superior reconstructed signals when compared to the other

4-21

1000

500-

00

-500-

-1000

"-2000 "

-2500

-3000-

41% 700 800 900 1000 1100 1200sample

(a)

1000

simpp

8o00

400-

400-

70200 90 100 100 10

(b)
Figure 4.12. (a) System 3 and (b) System 1 Reconstruction of the "5" Sound with 80%

Compression.

4-22

0.

-1 110 120 130 140 150sampla

Figure 4.13. Reconstruction of a Sinusoid, 0% Compression, Window Edge = Point 128

systems in the test. The transformed speech from system 3 was consistently more intelligible and

had higher reconstruction quality.

It is difficult to determine why Raduenz found that a transform like system 2 led to greater

compression capabilities. He was not using a program that provided perfect reconstruction, so the

more complicated system may have made up for the imperfections of the basic program. He also

may have changed to 16 KHz signals, which do give higher fidelity reconstructions. Raduenz had

assumed that changing from 16 KHz to 8 KHz would not effect his results. This is essentially true

when there is no compression involved. However, at high compression ratios, the change from 16

KHz to 8 KHz does make a difference. For the experiments from this thesis, all of the signals

(including the original speech files) were analyzed at 8 KHz.

4-23

0•

1-0.5

-1. 110 120 130 140 150

(a)

0.5

0

1.05

-1.' 0T 110 120 130 140 150

(b)

Figure 4.14. (a) 80% Compression and (b) 98% Compression Reconstruction of Sine, Window
Edge = Point 128

4-24

Complex and Real- Valued Malvar Wavelets

The Complex and the Sinusoidal Malvar wavelets (CMW and SMW) can now be directly

compared, since it has been determined that the basic Malvar wavelet produces reconstructed

signals as good as or better than any other system that was considered. It has been shown previously

that both of the wavelet types produce very accurate signals even at quite high compression ratios.

How do the two systems compare when considering reconstruction quality of speech signals at high

compression ratios (90% - 99%)?

The two Malvar wavelets were used to reproduce a speech file at compression ratios of 90%,

95%, and 99%. The original signal is shown in figure 4.15a. Figures 4.16a and 4.17a show how

the two transforms reconstructed the signal at 90% compression. There does not appear to be too

much difference except that the Complex MW plot reaches fewer of the peaks of the signal. This

can be shown more easily by plotting a smaller segment of the file. Figure 4.15b shows the original

speech signal from sample 16000 to sample 17000. The transform reconstructions of this segment

are shown in figures 4.16b and 4.17b. It is clear that both transforms are loosing information, but

the complex wavelet has lost much more information at the same compression ratio. The difference

in reconstruction is also shown by the numerical reconstruction errors. Table 4.11 lists the L2 and

RMS errors for the two transforms at 90%, 95%, and 99% compression. The sound of the SMW

speech, at 90% compression, was very intelligible. Much of the quality had been lost. There was

a mechanical tone of voice with ringing bell-like artifacts. The speech may have warbled and had

a "spacey" sound to it, but it was quit understandable. The CMW signal was also intelligible,

however it had added a constant low-level noise. There was a constant low popping all the way

through the file. At 95% compression (plotted in figure 4.18), the complex transform had many

sudden starts and stops at the beginning and ending of words. The low-level popping or clicking

was also more evident at 95%. The SMW reconstruction contained fewer sudden starts/stops and

did not have the same noise as the CMW version. More intelligibility had been lost, at 95%, but

4-25

most of the words can still be picked out. The spectral coefficients of the wavelets (real coefficients

only) are shown in figure 4.19. The spectral coefficients follow the same general pattern, however

the SMW coefficients are much higher magnitude and have a few more peaks within the groups

of coefficients. At 99% compression both systems have lost virtually all intelligibility. Speech

waveforrms are definitely still present (see figure 4.20 a and b), however they have been cut down

and smoothed over so much that real vocalization is not present.

SMW, 90% CMW, 90X1 SMW, 95% CMW, 95% SMW, 99% CMW, 99%
L 2 0.16433 0.33098 0.26795 0.43108 0.53188 0.67070
RMS 0.35393 0.71379 11 0.57709 0.93077 1.14551 1.44693

Table 4.11. L2 and RMS Errors for the Sinusoidal and Complex Malvar Wavelets at 90%, 95%,
and 99% Compression.

4-26

5000

4000

3000-

-1000-

-2000-

-3000-

0 0.5 1 5 2 2.5samples x 10ý

xlO
(a)

400-

111104.

(b)

Figure 4.15. (a) Original Speech Signal and (b) Speech Signal Between Samples 16000 and i7000.

4-27

4000-

-1000-

-2000-

1000 -A

41000-

0051 1.5 2 2.5
samplesx lO'

(a)

500-

300-

-300-

-400-

-5?. .2 1 .64 1 .66 1.686.

(b)

Figure 4.16. Sinusoidal MW Reconstruction at 90% Compression (a) Complete Signal and (b)
Samples 16000 to 17000.

4-28

5000

4000-

3000-

2000-

~1000

IC

-1000

-2M)0-

o00 1 1.5 2 2.5
,samples X 104

(a)

500

400-

300-

-200

-300
5-1001

-400

1.62 1.64 1.66 1.68 1.7
samps xlo'

(b)

Figure 4.17. Complex MW Reconstruction at 90% Compression (a) Complete Signal and (b)
Between Samples 16000 and 17000.

4-29

5000

4000-

3000-

2000-

1000o

-1000-

-2000

-3000

o) 0.5 1 1.5 2 2.5

sampls X 64

(a)

5000

4000

3M00

2000

-1000

-2000-

-3000-

0 0.5 1 1.5 22.5

(b)

Figure 4.18. (a) Sinusoidal and (b) Complex MW Reconstruction at 95% Compression.

4-30

0.8-

-0.2

-0.4-

-0.6

-0.8-

.10 0.5 1 1 .5 2 2.5
spectral coefficient number x 10'

(a)

500

400-

300-

200-

1 100 -111

0

-100-

-200-

-0 0.5 1 1.5 2 2.5
speckra coefficient number x 4

(b)

Figure 4.19. (a) Spectral Coefficients from the SMW and (b) Real Spectral Coefficients from the
CMW.

4-31

AIM -~-

2000-

1000-

-1000-

-2000

-3000

0 0.5 1 1.5 2 2.5

samples X 10x4

(a)

5000

4000-

3000-

*2000-

1000-

.1000-x10

4-32

Compression/Data Rates

The data rate calculations from Chapter III can easily be repeated for the sinusoidal Malvar

wavelet. The data rate calcilations will use a window size of 128 samples, sample rate of 8 KHz,

and 95% compression. The real-valued wavelet produces 128 real coefficients for each transformed

window. This transform, like the Discrete Cosine Transform, has no coefficient symmetry. The

amplitude of these coefficients can be coded using 4 bits/coefficient. The bits/sec for the spectral

values are computed by:

1. 8000 (samples/sec) / 128 (samples/window) = 62.5 windows/second.

2. 95% compression of a 128 point window :o- 6 samples/window.

3. 4 bits/sample (amplitude for the real coefficient)
+ 7 bits/sample (coefficient position)

11 bits/sample

4. (11 bits/sample).(6 samples/window) = 66 bits/window

5. (62.5 windows/second)-(66 bits/window) = 4.125 Kbits/second

However, over 60% of the system's 4125 bits are used just for positional information. The

position of the coefficients is being kept by one 128 point word. This one large word can be

broken down into smaller words. For large compression ratios, there will be many zeros within this

information word. Instead of transmitting 7 bits (27 = 128 possible positions) to give the exact

position of the coefficient, the position difference between two coefficients could be transmitted.

This difference could be limited to a portion of the larger window. For example, the 128 point

window can be broken into eight 16 point sub-windows. If there are no coefficients within 16

samples, then a one bit "dummy" coefficient (equal to zero) is inserted to hold the 16th samples

place. Thus the total bits sent prior to the window can be reduced with a "divide and conquer"

approach (32) (35:4-4). The maximum number of "dummy" bits to break a 128 sample window

4-33

into 16 sample sub-windows is seven (need a "dummy" at only one end p oint). The bit rate is then

recalculated as:

1. 62.5 windows/second

2. 6 samples/window

3. 4 bits/sample (amplitude for the real coefficient)
+ 4 bits/sample (coefficient position within sub-window)

8 bits/sample

4. 7 bits/window ("dummy" coefficients)

5. (8 bits/sample).(6 samples/window) + (7 bits/window) = 55 bits/window

6. (62.5 windows/second).(55 bits/window) = 3.437 Kbps

The CMW maintains a lower data rate for the same compression ratio, however the intelli-

gibility of the reconstructed signal is slightly worse. Note that the CMW reconstructions for this

section were done using the real and imaginary coefficients. It was shown previously that the mag-

nitude and phase gave a better quality reconstruction. Therefore the CMW and the SMW do yield

about the same quality reconstructions at comparable compression ratios and the two transforms

are virtually identical when both intelligibility and data rate are taken into account.

Summary

The experiments performed and the data collected demonstrate that the most accurate

method of compressing and reconstructing digitized data files is also the most basic method; the

Sinusoid Malvar wavelet. This conclusion makes intuitive sense; by performing just the forward

GMW and then compressing the data, there are fewer calculations to be made and therefore a

higher degree of accuracy may be maintained. Experiments also demonstrated that intelligible

4-34

speech signals can be obtained for 3 Kbpe or less using both the real-valued and complex-valued

Malvar wavelet.

4-35

V. Overlap Optimization For Real- Valued Malvar Wavelets

Introduction

It was shown in the previous chapter that at high compression rates it may be necessary to

increase the amount of overlap between adjacent intervals in order to smooth-out the transition.

There is no benefit to increasing the amount of overlap for small amounts of compression, because

the reconstruction is nearly flawless as it is. However, when the signal is being compressed 80% to

99% , increasing the overlap can improve the reconstruction greatly. The advantage of increasing

the amount of overlap is shown in figures 5.1(a) and (b).

Figure 5.1(a) is the reconstruction of a sine wave after 98% compression of the transform

coefficients. The boundary between blocks has been severely distorted. The next plot shows the

same signal with the same amount of compression, but with 50% (64 point) overlap. The distortion

has been eliminated. The question that needs to be answered is whether it is necessary to always

maximize the amount of overlap or is there some threshold where continuing to increase the overlap

yields limited returns.

Selecting An Error Criteria

Some sort of nume-rical error criteria must be used in order to be able to have a statistically

meaningful confidence interval for the amount of overlap. Chapters III and IV showed that, in

general, the lower the error value the better the reconstruction. Table 5.1 shows how the error

criteria of Chapters III and IV vary with increasing compression for a given signal.

Percent Compression RIV Relative L2 RMS Squared
0% 0.99997 0.01263 6.592z10- 0.99984
99% 0.94209 0.52631 4.168z10-3 0.72582
100% -0c 1.00000 7.954z10- 3 0.00000

Table 5.1. Error Criteria Comparison

5-1

0.5

0

-1 Ki

TO 110 12 130 140 150

(a)

0.5

0-

.iy

1 o110 120 30 40 10

(b)

Figure 5.1. (a) 1 Point Overlap and (b) 50% Overlap Reconstructions of a Sinusoid, 98% Coeffi-
cient Compression

5-2

Results from the previous chapters demonstrate that the RIV and the L,, criteria are not

very good reconstruction predictors. The RWnyi Information Value can be skewed because of the

non-linearity of the compression. The RIV is also always very close to 1.0 and therefore does not

differentiate between the reconstructions very well. The Loo value does give information on the size

and magnitude of extraneous spikes in the reproduced signal. These spikes are not always to worst

part of the reproduction. Some signals were reproduced with large spikes, but were otherwise very

close to the original signal; while other reconstructions were very smooth signals but did not match

the original very well.

The two error criteria that do follow the reconstruction fairly well are the relative L2 and the

RMS errors. The L2 was selected because it is normalized between zero and one (see table 5.1).

This normalization will make comparisons between signals and percent overlap more meaningful.

Comparison Study

A comparison study was performed to analyze the effects of overlap with the amount of

reconstruction error. The ten signals that were utilized in the experiments of Chapter IV were used

in this study (the plots of the original data are shown in Appendix A). Eight values of overlap were

selected: 1 point, 5%, 10%, 15%, 20%, 30%, 40%, and 50%. The most meaningful representation

of the results is a graph of the error (L 2) versus the percent overlap. The following plots are the

results of implementing the Generalized Malvar wavelet and the ten different signals:

These figures demonstrate a definite correlation between the percentage of overlap and the

level of reconstruction error. More importantly, the plots show that there is generally a point

where the slope of the error curve decreases. The reconstructed signals have a sharp decrease in

the amount of error through 5 to 15% overlap and then the slope begins to level out.

5-3

0.1.4 0.185

0.18
0.16.

0.175
0.155

0.17

0.15 0.165-

20.145- 0.16

0.155
0.14

0.1

0.135-
0.145

01 10 .O 20 30 400 50 0.11 1 0 2 10 30 40 80
% ovwwI % ov.w'

Figure 5.2. L 2 Error Versus Percent Overlap (a. "Wash", b. "Dark")

0.272

0.27-0.255-

0.2s

0.25 0.2668

0.245- 0.282-

0.26-

0.24

0 10 20 30 40 002% 1'0 20 30 4 10 50
%oVsqIw %Ow"l

Figure 5.3. L 2 Error Versus Percent Overlap (a. "S", b. "She")

5-4

0.24 0.1

0.235 0.0

0.3- 0.08

0.225 0.07

0.212
0.06

0206. 0.04

0.2
0.03-

0.200[

0.195; 10 20 30 40 50 '0i 10 20 30 40 50
% , % oVMo

Figure 5.4. L2 Error Versus Percent Overlap (a. "Ear", b. Sine)

0o o 0.o,

0.07 0.07

0.06 0.06

0.06 ,0.06

'10.04 1 .04

0.03 0.03

0.02 0.02

10 20 30 40 so 10 20 30 40 50
% ovm" % owrm

Figure 5.5. L 2 Error Versus Percent Overlap (Two Low Freq Sines)

5-5

002 0.105

0.019 0.10-

0.010 0.175

0.17
0.017-

!i 0.16

0.015
0.15

0.014" 0.15

0.013 0.145.

001 01 2 01 .0

10 20 30 40 0 10 20 30 40 0

% Ovhew % ovWtt

Figure 5.6. L2 Error Versus Percent Overlap (a. Convolution of Two Sines, b. Damped Sine)

Speech Signals

Three different sentences from the TIMIT database where transformed using three amounts

of overlap and three amounts of compression. The speech signals were overlapped by 1 point, 10%

(26 points), and 50% (128 points) and compressed by 80%, 90%, and 95%. There was a definite

decrease in the numerical error as the amount of overlap was increased. The L2 and RMS errors are

shown in table 5.2. The RMS error, at 80% compression, improved 8.3% from one point overlap to

26 point overlap and the error improved 16.3% when the 128 point overlap is compared to the one

point. All of the sentences showed the same level of improvement; 5-10% at 26 point and 15-20%

at 128 point overlap.

The improvement in numerical error can also be found in the graphical display of the signals.

Figure 5.7a and b plots the reconstruction of an utterance with one point and 128 point overlaps.

Differences are noted in the low amplitude sections of the reconstructions. One area of the signal is

expanded in figure 5.8 to show the differences in more detail. The 128 point overlap demonstrates

a better ability to reconstruct the ends of the signal and wherever the signal has an amplitude less

5-6

Overlap(Compression) L2 RMS
Sentence 1
1 pt (80%) 9.7447z10- 2 3.2882z10- 1

26 pt (80%) 8.9384z10- 2 3.0161z10-I
128 pt (80%) 8.1582z10- 2 2.7529z10-1
Sentence 2
I pt (90%) 1.5125z10- 1 5.1367z10-1
26 pt (90%) 1.3476z10 1- 4.5767z10-1
128 pt (90%) 1.2046z10-1 4.0912z10-1
Sentence 3
1 pt (95%) 2.9503z1O-' 6.3541z10- 1

26 pt (95%) 2.7649z10'- 5.9547z10- 1

128 pt (95%) 2.5293z10-' 5.4474z10-'

Table 5.2. Reconstruction Errors Versus Amount of Overlap and Percent Compression

than a few hundred. The higher overlaps gained more detail for the signal, but did not improve

the peaks or overall shape of the reconstruction.

The improvements found in the numerical error and in the plots were not as evident in

the audio reconstruction. The increased overlap did reduce some of the background noise, but

the increase did little to actually improve the quality or intelligibility of the speech signal. The

intelligibility of the sentence with one point overlap was not very different from that of the signal

with 128 point overlap because these low level details are not as important to the human ear as

the high level peaks and the overall shape of the speech signal.

Summary

The exact amount of overlap which should be used has not been analytically determined.

However, for speech signals it was determined that a one point overlap performs as well as the

maximum amount of overlap. The percent overlap used for other types of signals may be more

important and will depend upon the level of reconstruction desired and the limits on the amount

of pre/post processing to be done. Figure 5.1 demonstrates that there is a real improvement to be

made by increasing the overlap. For Malvar wavelets, the amount of overlap does not effect the

5-7

-2000

0 1q IF
-2000

-4000

0 0.5 1 1.5 2
s lx 104

(a)

-2000-

4000-

0 05 1 1.5 2samples x10

(b)

Figure 5.7. Reconstruction of the Sentence, "A Boring Novel Is A Superb Sleeping Pill", Using
(a) 1 Point Overlap and (b) 50% (128 Point) Overlap

5-8

400

300

200

4200
"• 8000 85W 9000 9500 10000 10500 11000samples

(a)

II

-10o9

-200

-300o

-400.

DO W00 5 9000 9500 100'00 10500 1100
samples

(b)

Figure 5.8. Reconstruction of the Same Sentence (From Sample 7500 to 11000) Using (a) I Point
Overlap and (b) 50% (128 Point) Overlap

5-9

bit rate. The lapped transform, for uncompressed data, sends the same "N" number of samples

regardless of the overlap amount. In other words, the frame size, [aj,ai+ 1], remains the same,

but the amount of overlap with the adjacent frames, [ej, cj+.], changes. There are many instances

where the processing available, prior to transmission or after reception, is quit acceptable to allow

for greater overlap. Increasing the amount of overlap will increase the number of computations

required prior to transmission and after reception. The area that gives the best return for the least

number of computations is the 5 to 10% overlap region. Most signals have improved significantly by

the 10% mark. When the slope of the curve levels out, the user is spending more on computations

and getting less of a return (in the form of a high quality reconstructed signal).

5-10

VI. Real- Valued Homomorphic Filtering

Introduction

The primary use of Homomorphic filtering in the literature is to perform deconvolution. In this

way, a signal may be separated into its components; whether they be a transmitted signal convolved

with the transmission path system function or the vocal tract system function convolved with the

vocal cords system function. The most common form of homomorphic filtering is the complex

cepstrum. But, as noted in Chapter II, the complex cepstrum is computationally expensive to

utilize because of the phase discontinuities.

The discrete cosine transform (DCT), discrete sine transform (DST), and the lapped orthogo-

nal transform (with a DST-like basis, the Generalized Sinusoidal Malvar Wavelet (GMW)) (34), (18)

are, by definition, real functions (28). Therefore, if the DCT, DST or GMW is used as part of a

homomorphic filter, we may reap the benefits of deconvolution without the problems of phase dis-

continuities. The basis function used with the Sinusoidal Malvar wavelet in Suter and Oxley's

paper is a real-valued function (34):

fk(z) = 1 sin [7r (k + 0 (6.1)

where k is the basis number, N is the window length, and x is the data position within the given

interval. The homomorphic filter would be implemented as in figure 6.1; where G(f) represents

the forward Generalized Malvar wavelet (GMW) and G(i) represents the inverse GMW, x(n) is

the original signal and x'(n) is the reconstructed signal, and L shall be called the homomorphic

coefficients. Because the resulting coefficients are always real-valued, there is no phase information

to track. Is it therefore less computationally expensive to use a real-valued basis function to

perform homomorphic deconvolution? The GMW, by definition, uses more than one window to

calculate its coefficients. However, all of the signal must lie within a single window when performing

6-1

+ +
sZM L

- G(f) - Lex GOi)

L (

Figure 6.1. A Generalized Malvar Wavelet Homomorphic System

deconvolution. Therefore it is not really the lapped transform that is being utilized, but its basis

function and a single window.

Development

When using a real-valued function, the analysis of the deconvolution can become very complex

and there are certain limitations on what signals can actually be separated.

For example, a signal consisting of an original signal and a simple echo (as in figure 6.2) can

be represented as:

8t,,(t) = s(t) + as(t - r) (6.2)

where a is the echo amplitude (0 < a < 1) and r is the time difference between the original signal

and the echo (r > 0). Assume that the signal, s(t), damps out prior to the arrival of the echo, so

that the two signals do not overlap. The Fourier transform of this signal can be represented simply

as:

Sto,(w) = S(w) + aF[s(t - r)] (6.3)

Now the Fourier transform's shift property (.r[s(t - r)) = S(w)e-jwl) is utilized to yield:

Stt(w) = S(w)[1 + ae-i W] (6.4)

6-2

However, for a homomorphic transform (with a different basis than the Fourier transform) to be

applied, we must first know the time shift property of the transform.

G(f ()) = r2/-MA if(t) sin [a(k + 1)-L dt (6.5)

Thus for f(it + r) we have:

G(f(t +,r)) = V2/- -IM f(t + r)sin ir(k + 1) t di (6.6)

Now let p = t + r so that dp = dt and t = p - r; also using the trig identity that sin(a + b) =

sin(a) cos(b) - cos(a) sin(b) yields:

G(f(t + r)) = V2-1hi f(p) sin [(k +)] cog [ir(k+ 1)r] dp (6.7)
+1 pI 2 +

- V--M fp)Cos [l(k + 1) -] sin [lr(k + 1) r] dp (6.8)

Now we will let Gc(f(t)) = N/2'M f f(t)cos[i(k + 1)]dt so that:

G(f(t +,r)) = con [7r(+ G) f j)) - sin [k + 1) r] Ge(f(t)) (6.9)

The time shift property for a purely sinusoidal basis is therefore a combination of the original basis

and a cosine basis.

Another difficulty in using a sinusoidal basis is that the convolution property of the Fourier

transform does not hold. The convolution property for our transform is given by:

Gtz(t) * y(t)] VT/2/ 7 [G(z(t)) • G(y(t)) - GC(z(t))• GC(y(t))] (6.10)

6-3

This means that the signal must be able to be directly expressed as two or more terms like

our example signal (stot (t) = s(t) + as(t - r)) or the signal must have either even or odd symmetry,

so that one part of the convolution property (equation 6.10) will be equal to zero. If the signal has

even symmetry then the Gc(z)- Gc(y) product will equal zero and, likewise, if the input signal is

odd symmetric then the product of G(z) . G(y) will be zero.

The use of a real-valued basis function has some definite merit because there is no need

to perform phase unwrapping. However, it is limited by the type of signal that can actually be

deconvolved.

Implementation

The homomorphic filtering system was implemented with the modified Malvar wavelet pro-

gram used to perform the homomorphic filtering (System 1 using the natural logarithm/exponential)

in Chapter IV. This program accomplishes all the steps of the Sinusoidal Malvar wavelet as out-

lined in Chapter IV and as proposed by Suter and Oxley (34). Input data (z[n])was created with

MATLAB data files and the DARPA TIMIT Phonetic speech database.

Function Input Output
Forward Transform x[n] Transform Coeffs (a)
Natural Log a's In a's
Inverse Transform In a's Homomorphic Coeffs (L)

Forward Transform L's Transform Coeffs (,C)
Exponential L's el
Inverse Transform e' Output Signal (x'[n])

Table 6.1. Homomorphic Filtering System with Malvar Wavelet

Deconvolution: Deconvolution is achieved by filtering the homomorphic coefficients (L).

Does the homomorphic GMW system deconvolve a process into its basic signals like the complex

6-4

cepstrum? A signal such as a damped sinusoid with an echo (as in figure 6.2) is often used to

demonstrate the deconvolution property of the complex cepstrum.

0.5 ,
"temp13.dat" -

0.4

0.3

amp 0.2 -

0.1

0 ------------ r ...

-0.1 r I

0 250 500 750 1000 1250 1500 1750 2000
time(msec)

Figure 6.2. Damped Sinusoid with an Echo

The signal is first transformed by the GMW. These wavelet coefficients are plotted in fig-

ure 6.3. The next step is to take the natural logarithm of the coefficients (a). When using the

power or complex cepstrum, the problem of an undefined logarithm will only occur when a coef-

ficient is exactly 0.0. The same procedure as outlined in Chapter IV was used to avoid any null

coefficient when using the power or complex cepstrum.

The inverse lapped transform is taken on the coefficients following the natural logarithm.

This set of values (plotted in figure 6.4) are the homomorphic coefficients. The homomorphic

coefficients are log amplitude values plotted against time (known as quefrency for cepstral users).

These homomorphic coefficients can now be filtered (liftered) to deconvolve the signal. The first

filter implemented is an all-pass filter to demonstrate that the process is completely reversible.

Reconstrucftion: The homomorphic coefficients are transformed by the following functions:

6-5

0.2

"alpha45.1"
0.15

0.1

amp 0.05

0

-0.05

-0.1 i i i I I I i
0 250 500 750 1000 1250 1500 1750 2000

'frequency'

Figure 6.3. Malvar Wavelet Coefficients

0.8

0.7 "out45.1" -

0.6

0.5

0.4
log amp0.3

0.2

0.1 -

0

-0.1 I i I i I I I
0 250 500 750 1000 1250 1500 1750 2000

'quefrency'

Figure 6.4. Homomorphic Domain

6-6

0.5
"out46.1"

0.4

0.3

amp 0.2 -

0.1

0 A h_ __ __ __ ___--_

0 250 500 750 1000 1250 1500 1750 2000
time(msec)

Figure 6.5. Perfectly Reconstructed Damped Sinusoid with Echo

1. Forward Sinusoidal Malvar Wavelet.

2. Exponential (e').

3. Inverse Sinusoidal Malvar Wavelet.

The resulting signal is a perfect reconstruction (with a normalized RMS error = 6.3587zl10- 0) of

the original damped sinusoid and echo (see figure 6.5).

In order to remove the echo, the high quefrency information must be removed. The desired

signal (original damped sine) is a high frequency signal that is transformed to the low quefrency

during the homomorphic filtering process. A low-pass filter is used on the quefrency domain to

eliminate the high quefrency (low frequency) components of the signal. The high frequency (low

quefrency) information is maintained and the original 50 Hz signal is reproduced as shown in

figure 6.6.

6-7

0.5 1 1
"out47.1"

0.4

0.3

amp 0.2

0.1

0

-0.1

0 250 500 750 1000 1250 1500 1750 2000
time(msec)

Figure 6.6. Reconstructed Damped Sinusoid with No Echo

Summary

This chapter demonstrated that it is possible to utilize standard deconvolution procedures

with a real-valued homomorphic system. The primary difficulty with this procedure is that only

certain types of signals are candidates for deconvolution. Signals that can be deconvolved with a

real-valued system are limited to even/odd symmetric signals or a signal that is able to be directly

expressed as two or more terms (sot(t) = s(t) + as(t - r), where s(t) is sufficiently damped).

6-8

VII. Conclusions

Summaryj and Conclusions

The coding of the algorithms and the experiments run with these programs encompass the

most important contributions of this thesis effort. During the coding effort of the Complex Malvar

wavelet algorithm, the theory behind the transform was validated. This untested algorithm was

coded and bugs were worked out of both the program and the theory. The validation effort was used

to ensure that the program (listed in Appendix B) would lead to perfect reconstruction of a signal.

Perfect reconstruction and orthonormality was accomplished and compression experiments were

run with the CMW. With the exception of rectangular windowed short time Fourier transforms

(STFT), this is the first completely orthogonal STFT to be implemented and tested for digital signal

processing applications. The CMW provides perfect reconstruction of signals and can reconstruct

signals fairly well at high compression ratios, it was found that the CMW can reconstruct intelligible

speech signals at data rates below 2400 bps. These rates were reached by compression of the

transform coefficients, reducing the number of bits/coefficient, and keeping positional information

to a minimum. The CMW bay be even more appropriate for image and RADAR processing.

Unfortunately, because the CMW was defined so late in the thesis cycle, the transform was not

extended to two dimensions or tested with image processing applications.

The Real-Valued Malvar wavelet software was modified and improved to provide more accu-

rate operation and to incorporate more features. The original code was not thoroughly validated

by Raduenz and had a few problems that did not allow for perfect reconstruction. The program

and theory were tested and scrutinized to identify and eliminate the bugs. The testing ensured

that the Ada software would provide an identical reconstruction of any type of signal with varying

size windows and overlaps. Previous research in the area of lapped transforms has demonstrated

perfect reconstruction for data using a 50% overlap, and mathematically derived conditions for a

more general size overlap. This thesis implemented a lapped transform algorithm, based on the

7-1

work of Suter and Oxley, that achieved perfect reconstruction of a signal with a one point over-

lap between intervals. This result is significant because a transform based on a one point overlap

requires half tl.e processing of a transform based on 50% overlap.

Three different improvements were made once the basic program was providing error free

operations. The basic program performed finite length window processing by copying the first

window of data to the end of the file and then transforming an extra window of data. The new

program is able to obtain perfect reconstruction of the first and last interval without copying data

or performing multiple calculations on one window. The program "wraps" the data around so

that the first and last data point become neighbors and overlapping of the end windows is done

directly between the two windows. This is the first technique that allows for a finite length signal

to be perfectly reconstructed using the lapped transform without artificially expanding the signal.

The Ada software for the non-expansive lapped transform is listed in Appendix C. A package was

written to allow the Malvar wavelet programs to recursively find the level of thresholding necessary

to provide a given percent compression. This enables the researcher to qualitatively compare the

results of different systems at a given level of compression. The second Ada package written for

the wavelet programs provides the error criteria for a reconstruction. This also gives the researcher

a better tool for studying reconstruction techniques.

Compression capabilities of different lapped transform systems were evaluated and compared.

Raduenz had found that a homomorphic system (using the lapped transform, the natural logarithm,

and a second lapped transform) had provided superior reconstruction of a speech signal. The three

systems (as shown in figures 4.3, 4.4, and 4.5) were validated to ensure they were working properly

at zero percent compression. The systems were then evaluated for their reconstructive abilities by

comparing numerical errors, graphical displays, and audio reconstructions of many different types of

signals at various amounts of compression. In all cases the most basic system (figure 4.5) provided

the best reconstruction of the signals. This is important because it allows for much less pre/post

7-2

processing to gain the best reproduction possible. Data rates close to 3000 bps were found to provide

reasonable quality and intelligible speech reconstruction for the real-valued Malvar wavelet.

The lapped transform theory allows for any amount of overlap from one point to 50% of the

size of the window, but the theory does not suggest what amount of overlap would be the best.

This thesis reports the results of multiple experiments to compare and contrast the amount of

overlap to the level of reconstruction. The results show that the numerical and graphical error

tends to continue to decrease as the amount of overlap increases, although this is not the case for

all signals. The rate at which the error decreases typically leveled out between 5 and 15% overlap.

This would suggest that about 10% overlap would be an optimal amount for most signals. Speech

signals showed this same pattern of improvement, however the decrease in error could not be heard

in the reconstructed speech. The speech signal is improved in low amplitude sections that are not

easily differentiated by the human ear. This again suggests that the most basic method, the lapped

transform with one point overlap, be used for speech compression purposes. This will save half of

the processing required for a 50% overlap. Deconvolution was also studied using the basis from the

real-valued Malvar wavelet. Deconvolution was shown to be possible using a sinusoidal function,

however there are certain limitations on the signal. The signal must have even or odd symmetry or

be able to be directly expressed as two individual terms (such as a damped signal with an echo).

Follow-On Research

The extension of the Complex Malvar wavelet to two dimensions is an intriguing possibility

for follow-on work. The orthogonality of the CMW could provide excellent results with image

processing applications. The CMW could be substituted into almost any algorithm or application

which utilizes the complex spectrum of a signal. A two dimensional Ada program would not

be trivial because the FFT (see Raduenz (26)) routine would also have to be extended to two

dimensions. The CMW also has some important one dimensional applications that should be

7-3

researched. Further speech compression experiments could be performed using more elaborate

compression and coding techniques. Data rates should be calculated, taking into account the

quality of the reconstruction, and the results compared back to a baseline system like LPC-10. The

CMW can also be utilized in RADAR signal analysis and to perform complex cepstral processing.

Deconvolution or other complex cepstral applications may have higher performance with the CMW.

Besides the code presented in this thesis, a phase unwrapping package would have to be produced

in order to use the CMW in a homomorphic filter. Similar overlap experiments could be performed

with the CMW. It was found that the overlap has little effect on speech signals, but that may not

hold true for images.

A hybrid wavelet approach looks promising for future research. Wavelet packets and the

Malvar wavelet could be used together for digital signal processing. Wavelet packets could be

used to segment a data stream while the Malvar wavelet would then analyze the data within each

segment.

The basis functions, window size, and amount of overlap are all variable entities within the

Generalized Malvar wavelet theory. All work to date has been accomplished using a set value for

these entities throughout a given signal. It may be possible to vary the basis function, size of

the window, and the amount of overlap to the changes within the signal. As the statistics of the

signal are changing, different basis functions may yield better reconstruction than others. Further

compression may also be obtained by scaling the size of the window to the type of signal. A signal

that is not changing very rapidly could utilize a large window, while a signal that changes very

quickly would probably be best transformed with a smaller window.

A comparison of the lapped transform with a speech coder like LPC-10 would provide greater

insight into the capabilities of the algorithm. There are many advanced coding techniques that

were not utilized with the lapped transform in this thesis. If these advanced coding techniques

7-4

could be incorporated with the wavelet compression, then a better comparison could be made. The

wavelet technique may be able to provide superior quality and intelligibility for less than 2400 bps.

7-5

Appendix A. Input Data for Experiments

The following signals were used as input for the system and overlap experiments of Chap-

ters I1, IV, and V.

M000

low ,

500

-2000

-3000-

05 15 2 25S~xlO'

Figure A.1. Utterance of the Sentence "She had your dark suit in greasy wash water all year"

A-1

4CW

-1000

-2000

4000

200 400 600 800 1000 1200 1400 1600 1800 200

(a)

200C

15W0

5A--

Gooo

5000

4000

1000

-10001

-2000-

ii0k2300 400OW80080 1000 1200 1400 1600 1600 2000

(a)

1000

80-

800-

400-

S40-4 0 800t f•O'• t0

(b)

Figure A.3. Utterance of the Word (a) "Dark" and (b) "Ear"

A-3

10

800

-1_) 400 800 800 1000 1200 1400 1600

0,0

00,

04

•0.2

041.

410.6

0.6

-1 800 10001200 1400 1800 18002

(b)

Figure A.4. (a) The Sound "S" and (b) Low Frequency Sinusoid

A-4

0.8-

0.8

0.4

0.2

10

0.2

-0.4

-0.6

-0.8

200 400 600 00 1000 1200 1400 1600 1800 2000

(a)

I

0.8

0.6

A-5

0.G

0.4

0.20-
-0.2

-0.4

-0% 200 400 600 00 1000

(a)

2

1.5

I I
0.5

5001000 1500samVW

(b)

Figure A.6. (a) Convolution of Two Different Frequency Sinusoids and (b) Damped Sinusoid with
an Echo

A-6

Appendix B. Ada Source Code For The Complex Valued Malvar Wavelet

This appendix provides the source code used during the development and testing of the

Complex Valued Malvar wavelet.

--------.10 -------- 20 -------- 30 -------- 40-------- 0 -------- 60 -- 70-- 78
with Text_Io; -- - - - - 78*
with ComplexPkg;
use ComplexPkg;
with MathLib;
use MathLib;
with Vector-Package;
use Vector-Package;
with Type_Package;
use Type-Package;
with PrintPackage;
use PrintPackage;
with FFTPack;
use FFTPack;

procedure caw is

-- Performs a forward complex Nalvar Vavelet
-- and an Inverse complex Kalvar wavelet.
-- Inputs must be real, transform coefficients are real and imaginary.
-- Output values are real.

package IntegerIo is new TextIo.IntegerIo(integer);
package FloatIo is new TextIo.Float.Io(float);

MaxDataLength : constant = 100-000;
KaxPartitions : constant 5= 00;

BigDaddyDataVector Real-Vector (1.. MaxDataLength);
BigDaddyPartitionVector Partition-Vector (0.-.MaxPartitions);

ActualDataLength integer = 0;
ActualPartitions integer 0;
Window-Size integer 0;
Overlap-amount integer 0;

Alpha_|ame,
Outfile.Naue string (1..30);

Alpha-.aae.Length,
Outfile..aneLength integer range 1..30;

S• a q i n d i m l ti l

---- 10 -------- 20 -------- 30 -------- 40 ------- 5 0 -------- 60 ------- 7- T --- 78

-- Get-.File-.Data prompts the user for the prepared into file name
-- and then reads in the data in the following order

-- (1) Input Data Filename
-- (2) Derivative Output Filename
-- (3) Alpha Output Filenae
-- (4) Output Data Filename
-- (5) Input Output Difference Filename
-- (6) General Info Filename
-- (7) lumber of Points in the Data Vector
-- (8) lumber of required partitions
-- (9) - (?) loop for input given in (8) and get
-- Boundary point then Overlap for each partition

procedure Get..File..Data (1lpha-.Filename :in out string;
Alpha-.Length :in out integer;
Output-.Filename :in out string;
Outname-.Length :in out integer;
Partitions :in out Partition-.Vector;
Window-Size :in out integer;
Overlap-.Amount :in out integer;
lumber-.Of-Partit ions :in out integer;
Data :in out Rteal-Vector;
Points :in out integer)is

-- Filenames, lengths must be in out so they can
-- be written to info file.
-- umber..Of-.Partitions and Points must be in out
-- Parameters because they are used in a loop to
-- Read in the appropriate amount of data

Infile,
Datafile Text-.Io.File-.Type;
Temp-.Input integer;
DataFfilename string(l. .30);
Data-Filename..Length integer;
In-Filename .tring(1. .30);
In-.Filename-.Length integer;
Counter integer :=0;

begin

Text-I..No lw-Line;
Tezt-.Io-put("Vhat is the name of the file containing")
Tezt-.Io.put("the prepared information ? > 'I);

Text-.Io .Get..Line(In..Fileziame, In...Filename..Length);
Tent-Io .Open(Infile, Text-Io. In-.File,

In-.Filename(1. .In-Filename..Length));

B-2

-- Nov I call in the required user data
Text-.Io.Get-.Lin.(Inf ile, Data-Filename, Data..Yilename-.Length);
Text-.Io.Get-Line(Inf il., ilpha-.Filename, Alpha-.Length);
Text-.Io.Get-.Line(Inf ii., Output-.Filename, Outnam...Longth);
Integer-.Io .getCIntile.Points);
Integer-.Io .get(Infile,Window-.Size);
Integer-l.Ioget (Imilii,. verlap..Amount);

Number-.Of-Partitions := Points/Vindov-.Size;

for j in 1. .Iwumber-.Of-.Partitions loop
Counter :=Counter + 1;
Partitions(j) .Boundary =Vindov..Size*Counter;

Partitions(j) .Overlap Overlap-.Amount;
end loop;
Text-.Io.Clos.(Inf ii.);
Partitions(0).Boundary 1;
Partitions(0) .Overlap Overlap-.Amuount;

-- now I call in the numbers for the vector Data
Text-.Io.Open(Datafile,Text..Io. In..yile,

Data_.Filozzame(l. .Data-.Filenaae-Longth));
for j in 1. .Pointa loop

Float..Jo.GetCDatafile, Data(j)); -- for floating point inputs
--Integer-.Io.Get (Dataf ile ,Temp..jnput);
--DataQj) :=float(Temp-.Input); -- for integer inputs

end loop;
Text_.Io.Close (Datafile);

end Get-File..Data;

---- 10 -------- 20 -------- 30 -------- 40 ------- 5 0 -------- 60 -------- 70 ---- 78

-- ultiply...By-V.indow

procedure Multiply-.By-V.indow (Data :in Real-.Vector;
Folded_.Data :in out Rteal-VYector;
Vindow-.j :in out RealVector;

A-j :in integer;
A-.j-.plus-I in integer;
Epsilon :in out integer;
Window-.size :in integer;
j: in integer) is

Pi constant := 3.141592654;

&-3

VindowBoundaiy : constant float 1.0/sqrt(2.0);

Start-File integer Data'f.-st;

End-File integer Data last;

Counter integer 0;

n-plus-: integer : indovesize;

begin
------------- *****Multiply By Vindow*****

-- Left edge

iftj : 0 then -- A..j= 0
FoldodData(A-J) 2.0 * Data(EndFile) * Windou4 (0);

counter :=1;
for x in (A.j+t)..(A-j + EPSILON) loop

FoldedData(x) := Data(x) * Windo._j(counter) +

Data(End-file - x) * Window_jC-counter);

counter := counter + 1;

end loop;
else

counter := 0;
for x in (A-j)..(A.j + EPSILON) loop

FoldedData(x) := Data(x) * Window-j(counter) +

Data(2*A-j - x) * Window.j(-counter);

counter := counter + 1;

end loop;
end if;

-- Center
for x in (A_j + EPSILON + 1)..(A.j.plus.l - EPSILON - 1) loop

Folded-Data(x) := Data(x);

end loop;

-- Right edge

if A-j.plus.1 = Data'last then -- (j = partitions'last-1)
counter := EPSILON;

for x in (A-j.plus.1 - EPSILON).. (A-j-plus_1 - 1) loop
FoldedData(x) := Data(z) * Vindov.j(n.plus.. - counter) -

Data(O + counter) *

Window-j(n-plus-l + counter);
counter := counter - 1;

end loop;
FoldedData(A-j.plus-l) 0.0;

else
counter := EPSILON;

for x in (A-j-plus.1 - EPSILON)..(A-j.plus-l) loop

Folded-Data(x) := Data(x) * Window-j(n.plus-l - counter) -

Data(2*A-j-plus-I - x) * Window-j(n-plus-I + counter);

counter := counter - 1;

end loop;

&4

end it;

end MultiplyByVindow;

-------- 10 ------- 20 ------- 30 ------- 40 -------- 50 -------- 60 -------- 70 -- 78

-- Compute-Coefficients

-- This procedure takes in data from 0 - 1-1 or 1-j - Aj+1-1 (I points) and

-- returns coefficients stored from 0 - N-1 or A.j - (ACj+l - 1) (N points)

procedure Compute-Coefficients (Data-Segment in Real-Vector;
FFTOut out Complex-Vector;

N in integer) is

Beta : RealVector(Data_segment'range);
TempFFT : ComplexVector(DataSegment'range);

-- Data_.Segment'range = (Start-Data)..(EndData - 1)
begin

-- (1) Scale Data-Segment Prior to taking FFT
Beta(Beta'first) := DataSegment(DataSegment'first);

for x in 1..(I-i) loop
Beta(Beta'first + x)

2.0*DataSegment(DataSegment'first + x);
end loop;

-- (2) Make Data-Segment Complex Valued
TempFFT ComplexOf((Beta));

-- (3) Perform Inverse FFT (See FFTPack)
FFT (TempFFT, True); -- includes I/I scaling

-- (4) Scale data by 1/2 (Inv FFT includes 1/I scaling, but
-- we require 1/21).
for x in FFTOut'range loop -- (StartData).. (EndData-1)

FFTOut(x) := 0.5*TempFFT(x);
end loop;

end Compute-Coefficients;

S10 ------- 20 -------- 30 -------- 40 -------- 50 -------- 60 -------- 70 ------ 78

Reconstruction FFT

procedure ReconstructionFFT(FFTIn in Complex_Vector;

B-5

FFTOut : out Complex-Vector) is

TempFFT : ComplexVector(FFTlIn'range) := FFTIn;

begin

-- (1) Perform FFT (See FFTPack)
FFT(TeupFFT, False);

for x in FFTOut'rangn loop
FFTOut(x) := TeapFFT(x);

end loop;
-- Scale from Beta values to L-ul values.

FFT-out(FFTOut'first) := 2.0*TempFFT(TempFFT'first);

end Reconstruction_FFT;

-- DivideByWindows

procedure DivideBy-Vindovs (TempData : in Complex-Vector;
Data-Segment out Complex-Vector;
Window . in Real-Vector;
A-i :in integer;
kAj.plus.i : in integer;
EPSILON in integer;
Window-Size in integer;
J . in integer) is

Counter integer 0;
End-File integer = TompData'last;
n.plusj: integer := window-size;
test float;

begin

-- Calculate DataSegment(A_j - ej + 1.. A.j - 1)
if j = 0 then -- A.j = 0

counter EPSILON;
for i in (A.j - EPSILON + 1)..(A.j - 1) loop

DataSegment(i) := Window(n.plus_1 - counter + 1) *
TempData(EndFile + i)

+ Window(n-plus-1 + counter - 1) *
TompData(2*A-j - i);

counter := counter - 1;

end loop;

1-6

else
counter := EPSILON;

for i in (A.j - EPSILON + 1)..(A.j - 1) loop
DataSegpent(i) := Vindow(n-plus.l - counter + 1) *

TempData(i) +
Vindow(nplusul + counter - 1) *
TeapData(2*A4j - i);

counter := counter - 1;
end loop;

end if;

-- Calculate DataSegoent(A-j)
test := 2.0 * window(O);

DataSeguent (A.j) := Tenp_Data(A_j)/test;

-- TeapData was calculated from A_(j)-e to A_(j+l)-I, so there
-- is no TeampData(EndFile)

-- Calculate Data_Segaent(1_j + 1 .. Aj + e.j - 1)
if j = 0 then -- A.j = 0

counter := 1;
for i in (Aj + 1)..(A-j + EPSILON - 1) loop

DataSegment(i) := Windou(counter) * TempData(i) -
Window(-counter) * TespData(EndFile- i);

counter counter + 1;
end loop;

else
counter 1;

for i in (A.j + 1)..(A.j + EPSILON - 1) loop
DataSegment(i) := Window(counter) * TempData(i) -

Window(-counter) * TeampData(2*A.j - i);

counter := counter + 1;
end loop;

end if;

-- Calculate DataSegment(A-j + e.j .. Aj+1 - e.j)

for i in (A.j + EPSILON).. (A_j_plus_. - EPSILON) loop

DataSegment(i) := TempData(i);
end loop;

end Divide-ByWindows;

procedure Error-Out (ReconData : in Complex-Vector;
Actual-Data : in Real-Vector;
L2_Error : in out float;
RMS_-rror : in out float;

LINFError : in out float;

B-7

Norm.RIV in out float) is

error,

sum3,
count float 0.0;
Recon..RIV float 0.0;
kctual-RIV float 0.0;

begin

for 1 in Actual-.Data'range loop
it abs(Actual_.Data(l) - Recon-.Data(l).real) > error then

error :=abo(Actual-Data(l) - Recon_.Data(l).real);
end if;
sual =Actual-.Data(l)*Actual-.Data(l) + siiml;
sum2 Recon-Data(l). roal*Recon..Data(l). real + su&2;
sum3 (Actual-.Data(l)-Recon-.Data(l) .real)*

(Actual-.Data(l)-Recon-.Data(l) .real) + u3
count count + 1.0;
if 1 =1 then

suml 0.0;
ium2 0.0;
sum3 0.0;
error:= 0.0;
count 0.0;

end if;
end loop;

RNS-.Error sqrt(sum3)/count;
L2-.Error eqrt(abs(sual-su2)/sumi);
L_.INF_.Error =error;

Recon-.RIV ln(sum2)/ln(2.0);
Actual-.RIV :=ln(suml)/ln(2.0);

Norm. DIV =Recon-.RIV/Actual-.RIV;

end Error-.Out;

---- 10-------- 20-------- 30-------- 40--------560-----60-------- 70 ---- 78

-- Do-.Work

procedure Do-Vork (Data :in Real_.Vector;
Partitions :in Partition-Vector;
Vindow-.Size :in out integer;
Epsilon :in out integer;
Alphatile-.String :in String;
Outfile-.Strin~g :in String) is

B-8

Pi :constant 3.141592664;
Transformod-Data. Real-.Voctor((Datalfirst-1). .(Data'last));

Temp-.data :Complox-.Voctor
((Data'first-1). .Data'last);

Window :Real-Vector
C (-EPSILOI). . (indow-.Size + EPSILON));

FFT-.Data,
Output-.Data :Couplex-.Vector ((Data'first-Partitions(O) .Ovorlap-1). .(Datall.
Multiply :Reai-Vector((Data'first-1). .(Data'Last-1));

Start_.Data, End-.Data, A-j£ and A-.j41
Start..Window, End_.Window, A- j - *-i and A-.j+1 + -l

Last-.Output-.Point, A- .j+1 - e-.j+1
Last....indow-.Point, -- j + -

Counter, J..Count, Tamp integer :=0;

Aiphaf ile,
Outfile Text_.Io.File..Type;
L2-ErBror float 0.0;
L-.INF-.Error float 0.0;
RKS-.Error float 0.0;
Iorm-.RIV float 0.0;
Percent-.Compression :float 0.0;
Threshold :float 0.0;
Percent-.Comnpressed :float 0.0;
Compression-.Count :integer 0;
No-.Zeros :integer 0;
No-.Zeros-.R :float 0.0;
Ma~x :float 0.0;
Adjust :float 1.0;
Too~igh :integer 0;
TooLow :integer 0;
StartYile :integer Data'first;
End-File :integer Data'last;
n :constant integer 0;
n..plusj1 constant integer Vindo,..Size;

begin
Text-.Io.Create (Alphafile, Text-.Io.Out..File, Alphatile-.String);

Text-.Io . Neu.Line;
Tezt-.Io.putC"What is the desired percent compression ?)
Text_.Io . Iew-line;
Tezt-.Io.put("(io 0.85 for 85% compression)");
Text-.Io .New-line;
Float-.Io .get (Percent-.Coupresuiou);
TextI o .Iev.Lin.;

B3-9

- -****CU•AE VINDO1I*****-------

-- left rising edge
it EPSILON = 0 then

Vindow(n) := 1.O/(sqrt(2.0));
else

for x in (n - EPSILON).. (n + EPSILON - 1) loop
Window(x) :- sin((Pi/(4.0Stloat(EPSILON))) *

(float(x - n + EPSILON)));

end loop;
end it;

-- center
for x in (n + EPSILON).. (n.plus.A - EPSILON) loop

Vindow(z) := 1.0;
end loop;

-- right talling edge
it EPSILON = 0 then

Vindow(n.plus-1) :- 1.0/(sqrt(2.0));
else

for x in (naplus.1 - EPSILON + 1)..(nplus_l + EPSILON - 1)
loop

Vindow(x) := cos((Pi/(4.0*float(EPSILON))) •
(float(x - n-plusx1 + EPSILON)));

end loop;
Windov(n.plus-l + EPSILON) := 0.0;

end it;

JCount :=-1;
for j in O..(Partitions'llat-1) loop

JCount := JCount + 1;

begin -- each segaent is transformed within this loop

if j-count = 0 then
TEMP := 1;

else

TEMP 0;
end it;

-----------------------------,Assign j Dependent Values----------------------

StazrtData : Partitions(j).Boundary - Tep;
End-Data : Partitions(j+1).Boundary;
Start-Vindow = Start-Data - EPSILON;
End-Window : = End-data + EPSILON;

S10 ------- 20 ------- 30 ------- 40 ------- 50 -- 60 ------ 70- - 78

TextIo.put("Vorking Processing Data Segment");
IntegerIo.put(j+l);
TextIo.New-_Line;

B-&O

lhltiplyByVindow(Data(Start...File. .idFile),
TranstorneodData((Start•_Data).. IbEd.Data).
Vindow(windowerangs), Startdata,
End-Data, EPSILON, Window_Size, JCount);

Compute.oCoetticiente(TransforuedData((StartData).. (Ead_-Data-1)),
FFTData((StartData).. (EndData-1)).
Window-Size);

-- This routine performs
-- (1) scale the data,
-- (2) an inverse FFT,

-- (3) a&signs coefficients 0 - N-1 to TransforaedData

------------ -------- Print Alpha Files---------------------- ----

for x in (Data'first-1)..(Data'last-1) loop

-- Print output values to the alpha file (coefficients).
FloatIo.Put (Alphafile, FFTData(x).real);

TextIo. oewLine(Alphatile);
end loop;

-------- 10 ------- 20 ------- 30 ------- 40 ------- 60 ------- 60 ------- 70 -- 78
------------- --------- RECONSTKUCTIOI------------------------------------

ReconstructionFFT (FFTData(StartData.. (EndData-1)),
ToepData(StartData.. (EndData-1)));

-- This routine performs a forward FFT

end; block
end loop; . . j loop

JCount := -1;
for j in 0..(Partitions'last-1) loop

JCount := JCount + 1;

begin -- each segment is transformed within this loop
it j.count = 0 then

TEMP 1;
else

TE•P 0;
end if;

-----------------------------Assign j Dependent Values---------------------

Start-Data : Partitions(j).Boundary - Temp;
End-Data Partitions(j+1).Boundary;
Start-Window : Start-Data - EPSILON;
Endindow = End-Data + EPSILON;

B-I1

Last..Output_.Poizit End-.Data - EPSILON;
LastW.indou.po int Start-.Data + EPSILON;

----- 10O-----20 -3----- 0-------40- --- O---S6----0 6 -- -- T ---7 --- 78

Divide...y-Windov. (T.Q..Data(T~mp..Data 'rang.),
Output-.Data(Start-Window. .Last-.Output-.Poin~t),
Window(windov 'rang.).
Start-.Data, End-.Data, EPSILON,
Window-.Size. J-.Coaunt);

if j -couint = 0 then
for k in 0.. (EPSILON - 1) loop

Output-.Data(End-.f 31e - k) :=Output...Data(-k);
end loop;

end if;

and; --- block
end loop; --- j loop

--------- ----- CALCULATE OUTPUT ERRORS-------------------------

Error-.Out (Output...Data(Data'rangs),
Data(Data'range),
L2-.Error * RNS..Error * L...ZNF-.Error, Morm-..RIV);

--------- ----- PRINT OUT TO FILES -------------------------
Text-.Io.Close(Alphafile);

Text-.io. Put-.Line ("print output to file");
Text_.Io .Nev...Line;
Text..Io.putQ'IL2 Error=';
Float-.Io .put (L2-.Error);
TextIo . ew-.Line;
Text-.Io. put("IL(Infinity) Error '9);
Float-.Io-put(L-.INF-.Error);
Text~o Nev...l m;
Text.,Io.put("ERS Error ';
Float..Io .put(RNS...rror);
Text .Io .Neu-Line;

Text-.Io. put ("Normalized RIV

TextIo . Nou.Lins;

for x in Data'range loop
Float-l.o.put(Outfile,Output..Data(z) .roal);

-- Real signals in -- > Real signal out.
--- Float-lo.put(Outfile,Output..Data(x) .iuag);

Text.Io .Nev.Line(Outfile);

B-12

end loop;

Toxt-I . Close(Outtile);

end DoVork;

begin -- main

Get-File-Data (Alpha-Name, Alpba..Iame..Length,
OutfilejName, Outfile..Iauo-e..ngth,
Dig...Daddy-.Partition-.Voctor. Vindow-Size.
Overlap-A.mount, Actual-Partitions,
Big.Da~ddy..Data..Vector, Actual-.Data..Length);

B- y sending the correct size arrays into Do-.Vork, the array
-- attributes can be used to determine the size rather than
-- passing another parameter

Do-Vork (Big-.Daddy...DataVector(1..Actual-Data..Length).
Big..Daddy..Partition-.Vector (0.. Actual-Partitions),
Vindow-.Size, Overlap_..mount,
AlphaNae (1.. Alpha..Nam*_.Length),
Outfile-..ame(1. .Outfile..jame..Length));

end; -- main

B134

Appendix C. Ada Source Code For The Real Valued Malvar Wavelet

This appendix provides the source code used during the development and testing of the Real

Valued Malvar wavelet.

-------- 10 ------- 20 ------- 30---40 ------- 50 ------- 60 ------- 70 78

-- ote: --

with Text_Io; -- 78*
with ComploxPkg;
use CouplsxPkg;
with MathLib;
use MathLib;
with Vector-Package;
use Vector-Package;
with Type-Package;
use Type-Package;
with Print-Package;
use Print-Package;
with FFTPack;
use FFT_Pack;

procedure glot is
-- Performs the basic GLOT and Inverse GLOT
-- Performs the overlapping without copying the end point data.
-- The program "wraps" the data around, so that the first data
-- point connects with the last data point.

package IntegerIo is now Text-Io.IntegerIo(integer);
package FloatIo is new TextIo.FloatIo(float);

MaxDataLength : constant 10= O00_O00;
Max-Partitions : constant = 500;

BigDaddyDataVector : Real.Vector (1..MaxDataLength);
BigDaddyPartitionVector : PartitionVector(O..NaxPartitions);

ActualDataLenth : integer :-0;
Actual-Partitions : integer : 0;

Alpha-Name,
Outfile-iaae : string (1..30);

Alpha..lameLength,
Outfile-NameLength : integer range 1..30;

C-1

----- 10O-----20------ 30-----0---- 0------0--00-------70 ----78

-- Get..File-.Data prompt& the user for the prepared info file name
-- and then reads in the data in the following order

-- (1) Input Data Filenae
-- (2) Alpha Output Filenamte
-- (3) Output Data Filenaa~e
-- (4) Number of Points in the Data Vector
-- (5) Number of required partitions
-- (6) - M? loop for input given in (5) and get
-- Boundary point then Overlap for each partition

procedure Get..File-.Data (Alpha-.Filenaae in out string;
Alpha..Length in out integer;
Output..Filenam in out string;
Outname-.Length in out integer;
Partitions in out Partition-Vector;
Number-.Of-Partitions :in out integer;
Data :in out Real-.Vector;
Points :in out integer)is

-- Filer-mie , lengths must be "in out" so they can
-- be written to info file (if want to use an
-- inf1)rmation file.
-- umber-.Of-.Partitions and Points must be "in out"
-- parameters because they are used in a loop to
-- read in the appropriate amount of data.

Infile,
Datafile Text-.Io.File-.Type;
Tamp-.Input integer;
Data-.Filename string(1. .30);
Data-Filename-.Length integer;
In-.Filename string(1. .30);
In-.Filenaae...Length integer;
Counter .integer :=0;

begin

Text..Io.Now-.Line;
Text-.Io.put("Vhat is the name of the file containing)
Text-.Io .put ("the prepared informnat ion ? > ");
Text-Io .Get...Line(In-.Filename, In...ilename-.Length);
Tezt-jIo.Open(Infile, Text-.Io. In-.File,

In-.Filename(1.. In-Filoname-.Length));

-- Now I call in the required user data
Text-.Io .Get_.Line(Infile, Data-Filename, Data-.Filename..Length);
Text-.Io.Get-.Line(Infile, . 1h-ilne Alpha-.Length);

G 2

Text-.IoA Gt-Line (mt ii. Output-.Filenafe, Outname-.Length);
Integor-..o .get(Infile ,Points);
Integer-.Io.get(InlileIimber-.Ot.Partitions);

----- ----- lead In Data From Data File---------------------
-- Set up all of the Partitions and the amount of
-- overlap for each window.

for j in 1.. Iuuber..Of-Partitions loop
Integer-.Io .get(Infile.Partitiona(j) .Boundary);
Integer-.Io.get(InfilePartitiona(j) .Overlap);

end loop;
Tezt-Io.Close(Intile);

1- (O) position initially set to 1, later set to 0
-- so that there are 0 N> data positions.

Partitions(0).Doundary 1;
PartitionsCO) .Overlap =Partitions(Iunber..otPartitions) .Overlap;

-- Call in the data for the vector Data
Text..Io.Open(Datalile,Text-.Io. In..File,

Data-Filenaae(l. .Data..Filenaae-.Length));
for j in 1. Points loop

Float-.Io.Get(Datafile, Data(j));
--Integer_.Io.Get(Datafile,Teup-.Input);
--Data(j) :=float(Temp-.Input); -- for integer inputs

end loop;
TextIo .Close(Datafile);

end Get..File-.Data;

---- 10 --------20 --------30 --------40 --------50 --------60 --------70 ---- 78

-- nt iply-.By...Window

procedure !Iultiply-.By-iindow (Data in Real-.Vector;
Folde&..Data in out Real-Vector;
Window-.j in out RealVector;

A-j :in integer;
A..j-.plus-I : in integer;
Epsilon..j :in out integer;
Epsilon..j..plus...1 in out integer;
J : in integer) is

Pi :constant 3.141592654;
Start..Fil* integer Data'first;
End-.File :integer Data'last;
Counter :integer 0;
Window-.Boundary-Value :constant float 1.0/sqrt(2.0);

C-3

begin

------------------ ****OcRITE VIIOOV*****---- ------ -----------

-- Window Defined Page 11

-- left rising edge
it Spsilon..j = 0 then

Vindow-.j (A.j) := Vindo....oufldary-Value;
else
for x in (A-j - BPSILON-j). .(A-.j + EPSILON-j) loop

end loop;
end it;

-- center

for x in (A-.. + EPSILON-j + 1).. C-j-.plus-.. - EPSILON-.j-.plus..1- 1

loop
Windov..j(x) := 1.0;

end loop;

-- right falling edge
if EPSILON-j-.plus-J 0 then

Window.j (A-.j-.plus-..) := indow-..oundaryValue;

else
for x in (A-.j-.plusJ-I EPSILOI..j-.plus..1)..

(A-j-.plus-.. + EPSILOI..j-.plue-.1) loop

Vindow-.j (i) :=cos((Pi/(4.0*tloat(EPSIWIN-j-plus-1)))

end loop;

end it;

-------- ----***a**hWtiply By Window***** --------------

-- Left Side

if j = 0 then

Folded-.Data(A-.j) :=0.0;
for x in (A-j + 1). .(A-.j + EPSILON-j) loop

Folded..Data(z) := Data(x) * Window-.j(x) -

Data(End..File - z) * Vindow-.j(2*A..j -x)

end loop;
elso
for x in (A-j). .(A-.j + EPSILON-.j) loop

Folded-.Data(X) :=Data~x) * Window-j(x) -

Data(2*A-.j - x) * Window-.j(2*A..j -x)

end loop;
end it;

C-4

-- Center
for x in (A-.. + EPSILON-j + 1). .(A-.j-.plus-.. - EPSILOI4...plus-j - 1)
loop

Folded-.Data(x) :=Data~x) * Window-.j(x);
end loop;

-- Right Edge
it A-.j-.plus-.1 = Data'last then -- (j =partitiona'last-1)

for x in CA-.j-.plus-.1 - Epsilon-j-.plue-2). .(A-.j-.plus-l. - 1) loop
Folde&..Data~x) :=Data(x) * Window...j(x) +

Data(h4...plus-.. - x) *
Windov..j(2*A-.j-.plus-l. -x)

end loop;
Folded..DataCA-j-.plus-..) :=2.0*DataCA4...plus-.1)*

Windou..j CA.j-.plus-l.);
else
for x in (A4...plus-.1 - EPSILON-j..plus-1). .(A-j-plus-1) loop

Folde&..Data~x) :=Data~x) * Window..j(x) +
Data(2*A-.j...plus-l. - x) * Windov-j(2*A-j-.plua... -x)

end loop;
end if;

end Mult iply-.By-.Windou;

---- 10 -------- 20 -------- 30 -------- 40 -------- 50 --------80 ------- 7- T --- 78

-- Compute-.Coefficients

-- This procedure takes in data from 0 - N or A...j - A-.j+i (1+1 points) anid
-- returns coefficients stored from 0 - 1-1 or A..j - (A-.j+1 - 1) (N points)
N- th point is used in calculations but is not a valid out point

-- It will be used to store the zero'th coefficient in the next data segment

procedure Compute-.Coefficients CData..Segment :in out RealVector) is

-- Data_.Segment is from A-.j .. A-j-.plus-.1
Two-.N :integer 2*(Data..Segment'last - Data..Seguent'first);
End..FFT-Data :integer Data-.Segment'first + Two..N - 1;
FFT-Data :Complex-Vector(Data-.Segment 'first.. End-FFT-.Data);

begin

-- (1) Even Extend Data-.Segment(Ses Vector-.Packags-Complex-.Package)
FFT-.Data Complex-.OfCEven-.ExtendCData_.Segment));

-- (2) Perform Inverse FFT (See PFT-.Pack)

C-5

FFT (FFTData, True); -- includes 1/I scaling

-- (3.a) Assign zero coefficient to first point in Data-Segment

Data-Segment(DataSegaent'first) := FFTData(FFTData'first).Real
* sqrt(float(TvoIN));

-- (3.b) Assign coefficients 1 to 1-1 back to DataSegment

for k in (DataSegment'first + 1)..(DataSegment'last-1) loop
DataSegment(k) := DataSegment(k-1) +

(2.0 * sqrt(float(Two..)) * FFTData(k).Real);
end loop;

end Compute-Coefficients;

S10 ------- 20 -------- 30 -------- 40 -------- 50 -------- 60 -------- 70 ------ 78

Reconstruction FFT

procedure ReconstructionFFT(InputData in Real_Vector;
Output-Data out Real-Vector) is

Pi : constant 3.141592654;
X : float 0.0; -- float counter
Scale-Factor : float;
Complex-Factor : Complex;
TwoN : integer 2 * InputData'length;
TwoNFloat : float float(Two-I);
EndFFTData integer InputData'first + TwoI - 1;

FFTData ComplexVector(InputData'first..EndFFTData);

begin

-- (1) Odd Extend Input-Data (See Vector-Package, Complex-Package)
FFTData := ComplexOf(OddExtend(InputData));

-- (2) Perform Inverse FFT (See FFTPack)
FFT(FFTData, True);

X :: 0.0;

Scale-Factor := sqrt(Two.LFloat);

-- Range for the scaling must be from 0 to N-1

for 1 in FFTData'range loop
ComplexFactor.real := Cos(Pi*X/Two.N.Float);

C-6

Coinplex-.Factor. imag :=Sin(pi*X/Two_#_.Float);
FFT-.Data(l) := Complex-.Factor * FFT.Data(l);
X := X + 1.0; -- float counter

end loop;

-- scale and assign imaginar~y part to Output-.Data 1. .1
for 1 in Output...Data'range loop

Output-.Data(l) :=Scale-Factor * FFT..Data(l).imag;
end loop;

end Reconstruct ion-.FFT;

-- Divide-.By-.Windows

procedure Divide-.By-W.indows (Tamp-.Data .in Real-Vector;
Data-.Segment out Real..Vactor;
Window-Right in Real-.Vector;

A-j in integer;
A-.j-.plus-.1 .in integer;
Epsilon-.j .in integer;
Epsilon-.j-.plue-.1 :in integer;
J : in integer) is

Counter integer 0;
End-.File integer Teup-.Data'last;
Window..Left Real-Vector(Window-.Right 'range);

begin

Window-.Left Reverse..Assignuent(Vindow-.Right);
-- Window-.left is now the opposite slope of Window-Right
-- and can be used for the j-1 windows and Window-.Right
-- will be used for the jth windows.

-- Calculate Data_.Seguent (A..j - e.-j + 1.. A-.j - 1)
if j = 0 then
for i in (A-.j - Epsilon..j + 1). .(A..j -1) loop

Data-.Segment(i) :=Vindow-.Left(i) *Teup..Data(End-.File + i)-
Window-.Left(2*A-.j - i)*
Temp-.Data(2*A-.j i)

end loop;
else
for i in (A-.j - Epsilon..j + 1).. (A-.j -1) loop

Data...Segment(i) :=Uindow-.Left(i) *Temp-.Data(i)-
Window-.Left(2*A-.j - i)*

C-7

Temp.Data(2*A..j -)

end loop;
end it;

-- Calculate Data-.Segment (A-.j)
if j = 0 then
Data-.Segment(A-.j) :=Teap-.Data(End-.File) / (2.0 * indo...Left(A..j));
else
Data-.Sepetnt(A-J) Temp-.Data(A-.j) /(2.0 * Window-.Left(A-j));
end it;

-- Calculate Data-.Segment (A-.j + 1I. A-.. + e-J - 1

if j = 0 then
for i in (A-.j + 1). .(A-j + Epsilon-.j -1) loop

Data_.Segaent(i) :=Window-.Right(2*A-j - i)*

Teinp-.Data(End-.File - i) +
Window-.Right(i) * Temp-.Data(i);

end loop;
else
for i in (A-j + 1). .(A..j + Epailon..j - 1) loop

Data...Segment(i) := indow-.Right(2*A..j - i)*
Temp-.Data(2*A-j -i) +
Window-.Right(i)* Tewp-.Data(i);

end loop;
end if;

-- Calculate Data..Seguent(A-j + e-.j .. A-j-1 - e4j-1)

for i in (A-j + Epsilon..j). .(A-.j..plus-j - Epailon-.j...plus..1) loop
Data-.Segment~i) :=Temp-.Data(i);

end loop;

end Divide-.By-.Windows;

procedure Error-.Out (Recon-.Data :in Real-.Vector;
Actual-Data :in Real-Vector;
L2..Error :in out float;
RMS-.Error :in out float;
L-.IUF-Error :in out float;
Iora..RIV :in out float) is

error,
sual,
sum2,
suz3,
count float :=0.0;

C-8

Recon-.RIV :float :0.0;
Actual-..IV :float :~0.0;

begin

for 1 in Actual-Datalrange loop
it abs(Actual-Data(l) - Recon_.Data(l)) > error then

error :=abs(Actual-.Data(l) - Recon...Data(l));
end if ;
sual =Actua.1.Data(l)*Actual-.Data(l) + sual;
sum2 Recon-.Data(l)*Recon-.Data(l) + sum2;
sum3 =(Actual-.Data(l)-Recon-.Data(l))*

(Actual-.Data(l)-Recon-.Data(l)) + sua3;
count Scount + 1.0;
it 1 1 then

suml 0.0;
sum2 0.0;

s um3 0.0;
error:= 0.0;

count 0.0;
end if;

end loop;

RNS-.Error sqrt(sua3)/count;
L2-Error :=sqrt(abs(suul-sua2)/suul);
L...IF...Error =error;

Recon-.RIV ln(sum2)/lu(2.0);
Actual-RIV ln(sual)/ln(2.0);
Ioru..RIV Recon-.RIV/Actual.JIIV - 1.00000000;

end Error-.Out;

---- 10-------- 20-- ---- 30-------- 40-------- 50-------- 60-------- 70-----78

-- Do-.Work

procedure Do-.Work CData in out Real-Vector;
Partitions in out Partition-Vector;
Alphafile-.String in String;
Outfile-.String in String) is

-- Define Data Vectors and Their Ranges.
FFT-.Data Real-.Vector(Data'range);
Transformed-.Data
Temp-.Data Real-Vector((Data'first-1). .(Data'last));

Output-.Data .Real-Vector

((Datalfirst-Partitions(0) .Overlap-i). .(Data'last+Partition (0) .Overlap));
Window : Real-Vector
((0-Partitions(0) .Overlap). .(Data'last + PartitionsCO) .Overlap));

C-9

Start-.Data, Rod-Data, -- A.. and A...j+I
StartVindow. Ebd.Vindaw, -- A.j e- j and A-.J+1 + e-.j+1
Last-.Output-.Point, -- j+1 *- ej+l
Last-..indow-.Point, A- A.j +*-

Counter integer 0;
Tvo... float 0.0;
Pi constant 3.141692664;
Temp.
J..Count integer 0;
End-.File integer Data'last;
Start-.File integer Data'first;
Aiphatile,
Outfil. Text-..o.File-.Type;
L2-.Error :float 0.0;
L...INF-.Error :float 0.0;
DJIS-E.rror :float 0.0;
Norm..RIV :float 0.0;

begin
Text-..o.Create CAiphafile, Text-.Io .Out-.File, Alphafile_.String);
Text-l.o.Create (Oiztf ile, Tezt-.Io.Out-.Filo, Outfile-.String);

---- 10 -------- 20 -------- 30 -------- 40 -------- 50 -------- 60 -------- 70 ---- 78
J..Count :=-1;

for j in 0.. (Partitions'last-1) loop
J-Count := J-Count + 1;

begin -- each segment is transformed within this loop

if 3-.Count = 0 then
Temp 1; -- To set AM0 = 0.

else
Temp 0;

end if;

-------------------- Assign j Dependent Values-----------------------
Start-.Data :=Partitions(j).Boundary - Temp;
End_.Data :=Partitions(j+I).Boundary ;
Start-V.indow Start-.Data - Partitions(j).Overlap;
End..Uindov : End-.Data + Partitions(j+l).Overlap;
Two-.N float(2 * (End-.Data-Start-.Data));

Text-Io.put("Vorking Processing Data Segment");
Integer-..o .put(j.1);
Text-l.o . New-Line;

Multiply-.By-V.indow(Data(Data' range),
Transformed-Data(Start-.Data. . nd..Data),
Vindow(Stazrt.Vindow. .End-Vindow), Start-.data.

0- 10

End-Data, Partitions(j). Overlap,
Partitions(j+) .Overlap J_.Count);

-- Steps 2 and 3 of Coefficient Evaluation (page 14)
-- Window added as passed parameter only so
-- it does not have to be recalculated
-- in DivideByWindows

-- Stop 4 of Coefficient Evaluation (page 15)
Counter := 0;

for 1 in StartData..EndData loop
TransformedData(l) := TransformedData(l) *

sin((Pi * float(Counter)) / (Two.N));
Counter := Counter + 1; -- Counter goes from 0 to N

end loop;

Compute-Coefficients (TransforaedData(StartData.. EndData));
-- This routine performs
-- (1) an even extension of the data,
-- (2) an inverse FFT,
-- (3) assigns coefficients 0 - 1-1 to Transformed-Data
-- Steps 5, 6, and 7 of Coefficient Evaluation (page 16)

------------ ------ Print Alphas for each segment to file----------------
for x in StartData.. (EndData-1) loop

float-io .put(AlphatfileTransformed.Data(x));
text-io .neowline(Alphafile);

end loop;

IReconstructionFFT(TransformedData((Start-Data).. (EndData-1)),

FFTData((StartData+l)..EndData));
-- This routine performs
-- (1) an odd extension of the data,
-- (2) an inverse FFT,
-- (3) assigns the scaled imaginary result to
-- the Output-Data values I - N or Aj + 1 to Aj+l
-- This indicates that data values 0 - N
-- create alphas from 0 - N-1 which in turn are used
-- to reconstruct data values from 1 - I
-- Steps I and 2 of Reconstruction (page 15)

end; . . block
end loop; . . j loop

S10 ------- 20 ------- 30 ------- 40 ------- 50 ------- 60 ------- 70 78

._Count :=-1;
for j in O.. (Partitions'last-1) loop

JCount := JCount + 1;

C-11

begin -- each segment is transformed within this loop

it J..Couzat 0 then
Temp 1

alse
Temp :0;

end it;
------------------- Assign1 j ependaent Values -------------------

Start-.Data : Partitiono(j).Boundary - Temp;
End-Data :Partitions(J+1).Boundary;
Start-.Window :2 Start-.Data - Partitions(j) .Overlap;
End..indow ~End-Data + Partitiono(j4.1).Overlap;
Tha-I :=n float (2 * (End-.Data-Start-.Data));
Last-Output-.Poinit Eud-Data - Par'titions (j +1). Overlap;
Last-Vindow-Point :~Start-.Data + Partitions(j).Overlap;

--

Divide-By. Windows (FFT-.Data(FFT-.Data' rang.).
Output..Data((Start-V.indowe1) . Last-.Output-Point),
Viudow(Start-Yiudow. .Last..Viudow..Point),

Start_.Data, En&..Data.Partitions(j).Overlap,
Partitions(j41) .Overlap, 3-Cowit);

M- ove the (0.. (-Epsilon(o)+M) Data Back To The
(End-.File..(En&..File-Epeilon(0)+1)) Range.

it J..count =0 then
for k in 0.. (Partitions(0).voerlap-1) loop

Output-.Data(Bnd...File - k) := Output_.Data(-k);
end loop;

end it;

end; -- block
end loop; -- j loop

--

--------- ---- CALCULATE OUTPUT ERRORS........................--

Error-.Out (Output-.Data(Datalrange),
Data(Data'rangs),
L2-.Error * RNS_.Error, LI1F-Error, l orm..RIV);

-------------PRINT OUT TO FILES............................--

Text-.io. Put-.Line ("Print output to file");
Tezt-l.o.Iev..Line;
Text..Io.putC*'L2 Error2
Float-.o .put (L2-.Error);
Text-I.N*.lw-Lin*;

C-12

Tezt..o.put("L(Infinity) Error H)

Float-.Io put (L-.IN7...Error);
Text-l.N.ow-leiin.;
Tezt-.Io.put("3hIS Error
Float.Io .put (INS-.Error);
Text_.Io.NleuLine;
Text-.Io. put ("Normalized llV
FloatIo .put(Eor...IZV);
Text .Io.NeyLine;

for x in Datalrailge loop
Float..Io.put(Ontiile.((Output..Data(x))));
Text-l..o le..Line(Outtile);
Text-.Io.Now.Line(Outtile);

end loop;

Text..Io.Close(Alphatile);
Text..Io .Close(Outtile);

end Do-.Work;

begin --main

Get ..File-.Data (Alpha..lame, Alpha..laie-.Length,
Outfile...Nae, Outfile-Name..Length,
Big-.Daddy-.Partition...Vector, Actual-.Partitions.
Big-.Daddy-.Data_.Vector, Actual-.Data-.Length);

-- By sending the correct size arrayur into Do-.Vork * the array
-- attributes can be used to determine the size rather than
-- passing another parameter

Do-V.ork (Dig-Daddy-.Data-Vector(1.. Actual-.Data-.Length),
Big-Daddy-.Partition-.Vector (0..Actual..Part it ions),
Alpha.laae (1.. Alpha..lame..Length),
Outiile-N.aae(1. .Outfile..Naae-t.Legth));

end; -- main

C-13

Appendix D. Ada Source Code For Linear Transforms

The following code was written to perform the linear transforms for the homomorphic and

non-homomorphic systems studied in Chapter IV.

-------------------- Linear Transform-------------------------
procedure LinearTransform(IaputData in Real_Vector;

Output-Data out Real-Vector;
Inverse in out Integer;
Transform in out Integer;
Kin in out Real-Vector;
Sipg in out Real-Vector;
J in Integer) is

: integer;
temp float;
mult float 10.0000;
add float 1.0000;

begin

if Inverse = 0 then
-- Find minimum value for each window

for 1 in InputData'range loop
if InputData(l) < min(J) then

Nin(j) := InputData(l);
end if;

end loop;

if Transform = I then
for 1 in InputData'range loop

OutputData(l) := InputData(l);
end loop;

end if;

if Transform = 2 then
for 1 in InputData'range loop

if InputData(l) < 0.0 then
sign(l) -1.0;

else
sign(l) 1.0;

end if;
OutputData(l) := sqrt(abs(InputData(l)));

end loop;
end if;

if Transform = 3 then
for 1 in Input-data'range loop

if InputData(l) < 0.0 then

sip(l) :-1.0;

else
sign(l) 1.0;

end it;
OutputData(l) := ln(abs(InputData(l)));

end loop;
and it;

it Transform = 4 then
for 1 in Input-data'range loop

OutputData(l) := mult * InputData(l) + add;

end loop;
end it;

it Transforma 5 then
for 1 in InputData'range loop
OutputData(l) := ln (InputData(l) +

sqrt(InputData(l)*InputData(l) + 1.0));

end loop;

end it;

end if; -- End Forward Transform Loop

it Inverse 1 then

it Transform = 1 then
for 1 in InputData'range loop

OutputData(l) := InputData(l);
end loop;

end it;

if Transform = 2 then
for 1 in InputData'range loop

temp := InputData(l)*InputData(l);
it sign(l) = -1.0 then

OutputData(l) -teop;
else

OutputData(l) toep;
end it;

end loop;
end it;

if Transform = 3 then
for 1 in InputData'range loop

temp := exp(InputData(l));
it sign(l) = -1.0 then

OutputData(l) -teamp;
else

OutputData(l) tamp;

end it;

D-2

end loop;
end it;

if Transform = 4 then
for 1 in InputData'range loop

OutputData(l) := (Input-Data(l) - add)/ault;

end loop;
end if;

it Transform = 6 then
for 1 in Input.data'range loop

OutputData(l) := 0.50 * Coxp(InputData(l)) -

exp(-InputData(l)));

end loop;

end if;

end if; -- End Inverse Transform Loop

end Linear•_Transform;

D-3

Appendix E. Ada Source Code For Compression and Error Calculations

Percent Compression

The following source code was used to perform the compression of coefficients in the experi-

ments of Chapters III, IV, and V. It is in a generic form, because the ranges for the loops of the

Compression package are determined by what precedes it (complex MW, sinusoidal MW, or one of

the systems presented in Chapter IV). The data that is changed (in this version "Output-Data")

also depends upon what precedes it (for example, the complex MW uses "FFTData" at this point

of the program.

----------.Compress the Homomorphic Coefficients---------------

IoZerosR := float(PercentCompression) *
float (data' last);

No-Zeros := integer(loZeros_-R);
TextIo. Newline;
TextIo.put("YoZero8 = ');
IntegerIo. put (NoZeros);
TextIo. Nevwline;

-- Find max output to establish initial threshold and to set the
-- level for adjustment.
for x in () .. () loop

if OutputData(x) > Max then
Max := OutputData(x);

end if;
end loop;

Cep-Threshold Percent-Compression * Max;
Adjust 0.10 * Max;

loop -- Start Infinite Loop

for x in () .. () loop
-- Compression Output for each segment to file-

if abs(OutputData(x)) < Cep-Threshold then
Temp(x) := 0.0;
Compression-Count := CompressionCount + 1;

else Temp(x) := 1.0;
end if;

E,1

end loop; -- the for-loop inside of the infinite loop

it (Compression-Count < No-zeros) then
it TooLow > 0 then

Cep-Threshold := Cp.aThreshold + Adjust;

end it;
it TooHigh > 0 then

Adjust := Adjust/2.0;
Cep-Threshold : Cep.-Threshold + Adjust;

end if;

TooLow 1;
Too~igh 0;

end it;

it (CoupressionCount > No-Zeros) then

it TooHigh > 0 then

Cep-Threshold := Cep-Threshold - Adjust;

end if;

if TooLow > 0 then

Adjust := Adjust/2.0;
Cep-Threshold := Cep-Threshold - Adjust;

end if;

TooHigh 1;

TooLow 0;

end it;

it (Compression-Count = No-Zeros) then

exit;
end it;

Compression-Count 0;

Cep-Threshold Cop-Threshold;

Adjust Adjust;

end loop; -- end oa infinite loop

for x in () .. () loop

-- Set compressed Output values to zero

Output-Data(z) := OutputData(x) * Temp(x);

-- Print output values to the alpha file (coefficients).

FloatIo.Put (Alphafile, OutputData(x));

TextIo.loeeLine(Alphafile);
end loop;

Error Calculations Code

The error calculation code below is for all real valued outputs and inputs. The complex MW

produces complex outputs. The user must ensure that the correct type of data is being sent to this

E-2

package. It was assumed that all inputs would be real and therefore all outputs from the CMW

would also be real. In this case only the real part of "Recon-Data" is used. Also the RIV criteria

that is calculated is actually (1 - RIV), because the values are often so close to one that :i s difficult

to distinguish them.

---------- EO Lr .-----------------------------

procedure Error-Out (ReconData in Real-Vector;
Actual-Data in Real-Vector;
L2_Error in out float;
RNSError in out float;
L-INFError in out float;
Nora-RIV in out float) is

error,
sunl,
suz2,
suz3,
count float 0.0;
ReconRIV float 0.0;
ActualRIV float 0.0;

begin

for 1 in ActualData'range loop
if abs(actualData(l) - Recon-Data(l)) > error then

error := aba(ActualData(l) - ReconData(l));
end if;
,aual Actual.Data(l)*ActualData(1) + sual;
sum2 ReconData(l)*Recon.Data(l) + suu2;
suz3 = (ActualData(l)-ReconData(l))*

(ictualData(l)-ReconData(l)) + sum3;
count count + 1.0;

end loop;

RlSError sqrt(sum3)/count;
L2_Error sqrt(abs(suul-sua2)/sual);
LINFError = error;
Recon-RIV ln(su&2)/ln(2.0);
ActualRIV ln(asux)/ln(2.0);
NormuRIV = ReconRIV/Actual-RIV - 1.00000000;

end error-out

E,3

Bibliography

1. Akansu, Ali N. and Frank E. Wadas. "On Lapped Orthogonal Transforms," IEEE Transactions
on Signal Processing, SP-40(2):439-443 (February 1992).

2. Anderson, Timothy R. Thesis Discussions, June-November 1993.

3. Bednar, Bruce P. and T.L. Watt. "Calculating the Complex Cepstrum without Phase Un-
wrapping or Integration," IEEE Transactions on Accoustics, Speech, and Signal Processing,
ASSP-33(4):1014-1017 (August 1985).

4. Bogert, Bruce P., et a]. Tame Series Analysis: The Quefrency Alanysis of Time Series for
Echoes; Cepstrum, Pseudo-autocovariance, Cross-cepstrum, and Saphe Cracking. M. Rosen-
blatt, Editor. New York: Wiley, 1963.

5. Campen, Alan. "Gulf War's Silent Warriors Bind U.S. Units Via Space," Signal, 40:81-84
(April 1991).

6. Childers, D.G., et al. "The Cepstrum: A Guide to Processing," Proceedings of the IEEE,
65(10):1428-1443 (October 1977).

7. Coifman, Ronald, "Test of the Bell." Private Communication, April 1992.

8. Coifman, Ronald et Meyer, Yves. "Remarques sur l'analyse de Fourier a fenktre," C.R.
Academie Sci Paris, t.312(Serie I):259-261 (1991).

9. Huffman, D. A. "A Method of Construction of Minimum Redundancy Codes," Proceedings of
the IRE, 40(10) (September 1952).

10. Jin, D.J. and E. Eisner. "A Review of Homomorphic Deconvolution," Reviews of Geophysics
and Space Physics, 22(3):255-263 (November 1992).

11. Khare, Anil and Toshinori Yoshikawa. "Moment of Cepstrum and its Applications," IEEE
Transactions on Signal Processing, 40(11):2692-2702 (November 1992).

12. Lewis, T. R. and S. Mitra. "Application of Blind Deconvolution Restoration Technique to
Space Imagery," SPIE: Adaptive Signal Processing, 1565:221-226 (June 1991).

13. Lloyd, S. P. "Least Squares Quantization in PCM," IEEE Transactions on Information The-
ory, IT-28:129-137 (March 1982).

14. Malvar, Henrique S. "Lapped Transforms for Efficient Transform/Subband Coding," IEEE
Transactions on Accoustics; Speech, and Signal Processing, 38(6):969-978 (June 1990).

15. Malvar, Henrique S. "Extended Lapped Transforms: Fast Algorithms and Applications,"
Proceedings of International Conf. on Accoustics, Speech, and Signal Processing, (D4b.4):1797-
1800 (1991).

16. Malvar, Henrique S. Signal Processing with Lapped Transforms. Boston : Artech House, 1992.

17. Malvar, Henrique S. and David H. Staelin. "Reduction of Blocking Effects in Image Cod-
ing with a Lapped Orthogonal Transform," Proceedings of International Conf! on Accoustics,
Speech, and Signal Processing, 781-784 (1988).

18. Malvar, Henrique S. and David H. Staelin. "The LOT: Transform Coding Without Block-
ing Effects," IEEE Transactions on Accoustics, Speech, and Signal Processing, 37(4):553-559
(April 1989).

19. Meyer, Yves. Wavelets, Algorithms and Applications. Translated and Revised by Robert D.
Ryan, Philadelphia: Society for Industrial and Applied Mathematics, 1993.

BIB-I

20. Nill, Norman B. and Brian H. Bouzas. "Objective Image Quality Measure Derived From
Digital Image Power Spectra," Optical Engineering, 31 (4):813-825 (April 1992).

21. Oppenheim, Alan V. Superposition a Class of Nonlinear Systems. Technical Report Ph.D.
Dissertation 432, Massachusetts Institute of Technology, March 1965.

22. Oppenheim, Alan V. and Ronald W. Schafer. Discrete Time Signal Processing. New Jersey:
Prentice Hall, 1989.

23. Parsons, Thomas W. Voice and Speech Processing. McGraw Hill, 1987.

24. Polydoros, A. and A. T. Fain. "The Differential Cepstrum: Definition and Properties," Pro-
ceedings IEEE lnt Symp. Circuits Syst, 77-80 (April 1981).

25. Quackenbush, Schuyler R. and Thomas P. Barnwell I11. Objective Measures for Speech Pro-
cessing. New Jersey: Prentice Hall, 1988.

26. Raduenz, Brian D. Digital Signal Processing Using Lapped Transforms with Variable Pa-
rameter Windows and Orthonormal Bases. MS thesis, AFIT/GE/ENG/92D-30, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1992.

27. Randall, R. B. Application of B &i K Equipment to Frequency Analysis. Naerum Denmark:
Bruel & Kiser Instruments, 1977.

28. Rau, K. R. and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications.
New York: Academic Press, 1990.

29. School of Engineering, Air Force Institute of Technology (AU). Proceedings of the
AFIT/AFOSR Workshop on the Role of Wavelets in Digital Signal Processing, 12-13 March
1992.

30. Sokolov, R. T. and J. C. Rogers. "Time-Domain Cepstral Transformation," IEEE Transactions
on Signal Processing, 41(3):1161-1169 (March 1993).

31. Spanier, Jerome and Keith Oldham. An Atlas of Functions. New York: Hemisphere Publishing
Corp., 1987.

32. Suter, Bruce W. Thesis Discussions, January-November 1993.

33. Suter, Bruce W. and Mark E. Oxley, "Getting Around The Balian-Low Theorem Using
Generalized Malvar Wavelets." Technical Report; Air Force Institute of Technology, Wright-
Patterson AFB, OH, October 1993.

34. Suter, Bruce W. and Mark E. Oxley. "On Variable Overlapped Windows and Weighted Or-
thonormal Bases," IEEE Transactions on Stgnal Processing (Submitted April 1992).

35. Switzer, Shane. Frequency Domain Speech Coding. MS thesis, AFIT/GE/ENG/91D, School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1991.

36. USSPACECOM. "United States Space Command Operations Desert Shield and Desert Storm
Assessment,". Military Report, Peterson AFB, CO, January 1992.

37. Vaidyanathan, P. P. Multirate Systems and Filter Banks. New Jersey: Prentice Hall, October
1992.

38. Weinstein, Clifford J. "Opportunities for Advanced Speech Processing in Military Computer-
Based Systems," Proceedings of the IEEE, 79(11):1627-1639 (November 1991).

39. Wesfried, Eva M. and Victor Wickenhauser, "Signal Processing via Fast Malvar Wavelet Trans-
form Algorithm." Technical Report; Ceremade, University of Paris, Dauphine, 1993.

BIB-2

40. Williams, William J., et al. "Uncertainty, Information and Time-Frequency Distribu-
tions," SPIE: Advanced Signal Processing Algorithms, Architectures, and Implementations Ii,
1566:144-156 (May 1991).

41. Young, Robert and Nick Kingsbury. "Frequency-Domain Motion Estimation Using a Complex
Lapped Transform," IEEE Transactions on Image Processing, 2(1):2-17 (Jan 1993).

BIB-3

Vita

Captain Stephen R. Hall was born in Ridgewood, New Jersey on 8 July 1965. He graduated

from Chautauqua Central School, Chautauqua New York in 1983. Captain Hall graduated magna

cum laude from Grove City College with a Bachelor of Science degree in Electrical Engineering.

He was an ROTC Distinguished Graduate and was commissioned into the US Air Force in 1987.

Captain Hall was assigned to the 1st Space Operations Squadron, Falcon Air Force Base, Colorado.

He served as a Satellite Operations Crew Commander and as the Assistant Chief of Current Op-

erations for three satellite programs. Captain Hall entered the Air Force Institute of Technology

in May 1992 to pursue a Masters in Space Operations. Upon graduation, Captain Hall will be

assigned to the Air Force Technical Applications Center, Patrick Air Force Base, Florida. Steve is

married to Lisa Todd Hall of Murrysville, Pennsylvania and has one daughter, Caitlyn.

Permanent address: 37 Evans Street
Mayville, New York 14757

VITA-1

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 07O4-o088

1. AGENCY USE ONLY iLeive blank) I2 REPORT DATE I. REPORT TYPE AND DATES COVERED
December 1993 Master's Thesis7I

4 TITLE AND SUBTITLE S. FUNDING NUMBERS

FILTERING, CODING, AND COMPRESSION WITH MALVAR
WAVELETS

6. AUTHOR(S)

Stephen R. Hall, Captain, USAF

- PERFORMING ORGAN12ATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

9 5ONOP0NS . MOWTNIOkiN(-, AGENCY NAME(S) AND ADD[RESS(ES) 10. SPONSORING MONITORING

Jon Sjogren, Ph.D. AGENCY REPORT NUMBER

AFOSR/NM
Boiling AFB, DC 20332-6448

1 I. SUPPLEM"LNTARTY NOTE)

12a DISTR.BIU 'ON r\VAI..AiiItTY STATEAMINT 12b DISTRIBUTION CODE

Approved for public release; distribution unlimited

This thesis develops and evaluates a number of new concepts and tools for the analysis of signals using Malvar
wavelets (lapped orthogonal transforms). Windowing, often employed as a spectral estimation technique, can
result in irreparable distortions in the transformed signal. By utilizing the Malvar wavelet, any signal distortion
resulting from the transformation can be eliminated or cancelled during reconstruction. This is accomplished by
placing conditions on the window and the basis function and then incorporating the window into the orthonormal
representation. Paradigms for both a complex-valued and a real-valued Malvar wavelet are summarized. The
algorithms for the wavelets were implemented in the DOD standard language, Ada. The code was verified to
ensure perfect reconstruction could be obtained and experiments were performed using the wavelet programs.
Various compression techniques were investigated and evaluated using the Malvar wavelet in both homomorphic
and non-homomorphic systems. The Malvar wavelet has the unique ability to overlap adjacent windows without
increasing the number of transform coefficients. Various amounts of window overlap were investigated to deter-
mine if there is an optimal amount which should be used. In addition, the real-valued basis function was used
to attempt real-valued deconvolution.

14. SUBJECT TIRMS 15. NUMBER OF PAGES

Wavelets, Malvar Wavelet, Lapped Transform, LOT, Homomorphic Filters 154
16. PRICE CODE

17. SECURITY CLASSIFICATION 1 SECURITY CLASSIFICATION 19SECURITY CLASSIFICATION 2OF ABSTRACTU
OF REPORT OF THIS PAGE I OF ABSTRACT2.LITAONOASTCj

Unclassified Unclassified Unclassified ULJ

%jSN 7-,z -'-! . '80 $5 01) Stardard ý-orr 298 (Rev 2-89)
298 I 1 I

